Fuzzy e-paraopen Sets and Maps in Fuzzy Topological Spaces

D MADHUSUDANA REDDY, ASSISTANT PROFESSOR, madhuskd@gmail.com T VENKATA SIVA, ASSISTANT PROFESSOR, tcsiva222@gmail.com P SOMA SEKHAR, ASSISTANT PROFESSOR, Paletisomasekhar@gmail.com

Department of Mathematics, Sri Venkateswara Institute of Technology, N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722

Abstract

The fuzzy e-paraopen and fuzzy e-paraclosed set notions in fuzzy topological spaces are the focus of this essay. In addition, we go on to examine the characteristics of a small subset of fuzzy maps, including those that are e-paracontinuous, -fuzzy e-paracontinuous, e-parairresolute, minimum e-paracontinuous, and maximum e-paracontinuous.

Keywords: Fuzzy e-paraopen, fuzzy e-paracontinuous, fuzzy minimal e-paracontinuous, fuzzy maximal e-paracontinuous.

I. Introduction

Following Chang's [2] development of fuzzy topology, Zadeh [10] constructed fuzzy sets. Ittanagi investigated fuzzy minimum (maximal) open sets in [3] while Wali investigated paraopen sets in [4]. Afterwards, the concept of mean open set was presented and shown by Mukherjee and Bagchi in [1]. In this article's part II, we explore some comparison findings and present the concept of fuzzy e-paraopen sets. In Section III, we provide many maps and examine their outcomes using suitable instances. These maps include fuzzy e-paracontinuous, -fuzzy e-paracontinuous, fuzzy e-parairresolute, fuzzy minimum e-paracontinuous, and fuzzy maximum e-paracontinuous. Fuzzy e-open, fuzzy e-paraopen, fuzzy e-paraclosed, fuzzy minimum e-open, fuzzy maximal e-open, and fuzzy maximal e-closed are variously abbreviated as Fe-O, Fe-PO, Fe-PC, FMIe-O, FMIe-C, FMAe-O, and FMAe-C in this study. F and Y are the acronyms for "fuzzy topological spaces" in this work.

The following terms are sometimes abbreviated as f.e-c, f.e- pc, f.mi.e-c, f.ma.e-pc, f.ma.e-pc, f.mi.e-p.i, and f.ma.e-p.i, respectively: fuzzy e-continuous, fuzzy e-paracontinuous, fuzzy minimal e-continuous, fuzzy maximal e-paracontinuous, and fuzzy maximal e-parairresolute.

Definition 1.1 A fuzzy subset ξ of a space *F* is called fuzzy regular open [3] (resp. fuzzy regular closed) if $\xi = Int(Cl(\xi))$ (resp. $\xi = Cl(Int(\xi))$).

The fuzzy δ -interior of a fuzzy subset ξ of *F* is the union of all fuzzy regular open sets contained in ξ . A fuzzy subset ξ is called fuzzy δ -open [9] if $\xi = \text{Int}\delta(\xi)$. The complement of fuzzy δ -open set is called fuzzy δ -closed (i.e., $\xi = \text{Cl}\delta(\xi)$).

Definition 1.2 A fuzzy subset ξ of a fts *F* is called fuzzy e-open [8] if ξ cl(int $\delta \xi$) int(cl $\delta \xi$) and fuzzy e-closed set if

 ξ cl(int $\delta\xi$) int(cl $\delta\xi$).

Definition 1.3 [7]A proper nonzero fuzzy e-open set α of *F* is said to be a (i)fuzzy minimal e-open if 1 *F* and α are only fuzzy e-open sets contained in α . (ii)fuzzy maximal e-open 1 *F* and α are only fuzzy e-open sets containing α .

Definition 1.4 A map from fts *F* to another fts Y is called,

(i) fuzzy minimal e-continuous[7] if $f-1(\lambda)$ is a fuzzy e-open set on *F* for any fuzzy minimal e-open set λ on Y. (ii)fuzzy maximal e-continuous[7] if $f-1(\lambda)$ is a fuzzy e-open set on *F* for any fuzzy maximal e-open set λ on Y.

II. FUZZY e-PARAOPEN AND SOME of THEIR PROPERTIES

Definition 2.1 A Fe-O set β of a fts *F* is said to be a Fe-PO set if is neither FMIe-O nor FMAe-O set. The complement of Fe-PO set is Fe-PC set.

Remark 2.2 It could be clear from definitions that every Fe-PO set is a Fe-O set and every Fe-PC set is a Fe-C set converse is not true as shown in the succeeding example.

Example 2.3 Let $\beta 1,\beta 2,\beta 3$ and $\beta 4$ be fuzzy sets on $F = \{a, b, c\}$. Then $\beta 1 = 0.5/a + 0.8/b + 0.8/c$, $\beta 2 = 0.5/a + 0.8/b + 0.9/c$, $\beta 3 = 1.0/a + 0.9/b + 0.8/c$ and $\beta 4 = 1.0/a + 0.9/b + 0.9/c$ be fuzzy sets with $\mathfrak{F}_1 = \{0_F, \beta_1, \beta_2, \beta_3, \beta_4, 1_F\}$, Then $FM_iO(F) = \{\beta_1\}, FM_aO(F) = \{\beta_4\}, FM_iC(F) = [\beta_4], FM_iC($

a fuzzy e-closed set but not a Fe-PC set.

Remark 2.4 The succeeding example revealed that union and intersection of Fe-PO (resp. Fe-PC) sets need not be a Fe-PO (resp. Fe-PC).

Example 2.5 In example 2.3, fuzzy sets $\beta 2$, $\beta 3$ are Fe-PO sets but $\beta 2 \vee \beta 3 = \beta 4$ and $\beta 2 \wedge \beta 3 = \beta 1$ which are not Fe-PO sets. Similarly for the Fe-PC sets $\beta c_2, \beta c_3$ but $\beta c_2 \vee \beta c_3 = \beta c_1$ and $\beta c_2 \wedge \beta c_3 = \beta c_1$ and $\beta c_2 \wedge \beta c_3 = \beta c_1$ and $\beta c_2 \wedge \beta c_3 = \beta c_1$ which are not Fe-PC sets.

Theorem 2.6 Let α be a nonzero proper Fe-PO subset of *F*. Then there exists a FMIe-O set β such that $\beta < \alpha$.

Proof. Since the definition of FMIe-O set, we can conclude that $\beta < \alpha$.

Theorem 2.7 Let α be a nonzero proper Fe-PO subset of *F*. Then there exists a FMAe-O set P such that $\alpha < P$.

Proof. Since the definition of FMAe-O set, we can conclude that $\alpha < P$.

Theorem 2.8 (i)Let α be a Fe-PO and β be a FMIe-O set in *F*. Then $\alpha^{\beta} = 0$ *F* or $\beta < \alpha$.

(ii)i)Let α be a Fe-PO and $\tau 1$ be a FMAe-O set in *F*. then $\alpha v \tau 1 = 1$ *F* or $\alpha < \tau 1$.

(iii)Intersection of Fe-PO sets is either Fe-PO or FMIe-O set.

Proof. (i) Let α be a Fe-PO and β be a FMIe-O set in *F*. Then $\alpha \wedge \beta = 0$ *F* or $\alpha \wedge \beta \neq 0$ *F*. Suppose $\alpha \wedge \beta = 0$ *F*, then we need not prove anything. Assume $\alpha \beta \subseteq 0$ *F*. Then we get $\alpha \beta$ is a Fe-O set and $\alpha \beta < \beta$. Hence $\beta < \alpha$.

(ii) Let α be a Fe-PO and γ be a FMAe-O set in *F*. Then $\alpha v \gamma = 1$ *F* or $\alpha v \beta \neq 1$ *F*. Assume $\alpha \gamma = 1$ *F*, then we need not prove anything. Suppose $\alpha \gamma \zeta 1$ *F*. Then we get $\alpha \gamma$ is a Fe-O set and $\gamma < \alpha \gamma$. Since γ is a FMAe-O set, $\alpha v \gamma = \gamma$ which implies $\alpha < \gamma$.

(iii) Let α and η be a Fe-PO sets in *F*. As $\alpha \land \eta$ is a Fe-PO set then we need not prove anything. Assume $\alpha \land \eta$ is not a Fe-PO set. Since definition, $\alpha \land \eta$ is a FMIe-O or FMAe-O set. If $\alpha \land \eta$ is a f.mi. e-open set then we need not prove anything. Suppose $\alpha \land \eta$ is a FMAe-O set. Now $\alpha \land \eta < \alpha$ and $\alpha \land \eta < \eta$ which contradicts the fact that α and η are Fe-PO sets. Therefore $\alpha \land \eta$ is not a FMAe-O set. That is $\alpha \land \eta$ must be a FMIe-O set.

Theorem 2.9 A subset $\tau 1$ of *F* is Fe-PC iff it is neither FMAe-C nor FMIe-C set.

Proof. Since the definition of FMAe-C set and the fact that the complement of FMIe-O set is FMAe-C set and the complement of FMAe-O set is FMIe-C set.

Theorem 2.10 Let *F* be a fts and $\tau 1$ be a nonzero Fe-PC subset of *F*. Then there exists a f.mi.e-c set P such that $P < \tau 1$.

Proof. Since the definition of FMIe-C set we can conclude that $P < \tau 1$.

Theorem 2.11 Let *F* be a fts and $\tau 1$ be a nonzero Fe-PC subset of *F*. Then there exists a f.ma. closet set Q such that $\tau 1 < Q$. Proof. Since the definition of FMAe-C set we can conclude that $\tau 1 < Q$.

Theorem 2.12 Let F be a fts.

(i) Let δ be a Fe-PC and τ be a FMIe-C set. Then $\delta \wedge \tau = 0_F$ or $\tau < \delta$.

(ii) Let δ be a Fe-PC and γ be a FMAe-C set. Then $\delta \lor \gamma = 1_F$ or $\delta < \gamma$.

(iii)Intersection of Fe-PC sets is either Fe-PC or FMIe-C set.

Proof. (i) Let δ be a Fe-PC and τ be a FMIe-C set in *F*. Then $(1 F - \delta)$ is Fe-PO and $(1 F - \tau)$ is FMAe-O set in *F*. By Theorem 2.8(ii) we have $(1 F - \delta) \lor (1 F - \tau) = F$ or $(1 F - \delta) < (1 F - \tau)$ which implies $1 F - (\delta \land \tau) = 1 F$ or $\tau < \delta$. Therefore $\delta \land \tau = 0 F$ or

(ii) Let δ be a Fe-PC and γ be a FMAe-C set in *F*. Then $(1 F - \delta)$ is Fe-PO and $(1 F - \gamma)$ is FMIe-O sets in *F*. By Theorem 2.8(i) we have $(1 F - \delta) \land (1 F - \gamma) = 0$ *F* or $1 F - \gamma < 1 F - \delta$ which implies $1 F - (\delta \lor \gamma) = 0$ *F* or $\delta < \gamma$. Therefore $\delta \lor \gamma = 1$ *F* or

(iii) Let δ and η be a Fe-PC sets in *F*. As $\delta A \eta$ is a Fe-PC set then nothing to prove. Assume $\delta A \eta$ is not a Fe-PC set. By definition, $\delta A \eta$ is a FMIe-C or FMAe-C set. If $\delta A \eta$ is a f.mi. e-closed set, then nothing to prove. Suppose $\delta A \eta$ is a FMAe-C set. Now $\delta < \delta A \eta$ and $\eta < \delta A \eta$

which contradicts the fact that δ and η are Fe-PC sets. Therefore $\delta A \eta$ is not a FMAe-C set. That is $\delta A \eta$ must be a FMIe-C set.

III. FUZZY E-PARACONTINUOUS MAPS AND SOME of THEIR PROPERTIES

Definition 3.1 A map ψ from fts *F* to another fts Δ is called

- (i) f.e-pc if ψ -1(α) is a Fe-O set on *F* for every Fe-PO set α on Δ .
- (ii) *-f.e-pc if ψ -1(α) is a Fe-PO set on *F* for every Fe-O set α on Δ .
- (iii) f.e-p.i if ψ -1(α) is a Fe-PO set on *F* for every Fe-PO set α on Δ .
- (iv) f.mi.e-pc if ψ -1(α) is a Fe-PO set on *F* for every FMIe-O set α on Δ .
- (v) f.ma.e-pc if ψ -1(α) is a Fe-PO set on *F* for every FMAe-O set α on Δ .

Theorem 3.2 Every f.e-c map is f.e-pc but not conversely.

Proof. Let $\psi : F \to \Delta$ be a f.e-c map. We have to prove ψ is f.e-pc. Let α be any Fe-PO set in Δ . Since every Fe-PO set is a Fe-O set, α is Fe-O set in Δ . Since ψ is a f.e-c, $\psi - 1(\alpha)$ is Fe-O set in *F*. Hence ψ is a f.e-pc.

Example 3.3 Let $\alpha 1, \alpha 1, \alpha 2, \alpha 3, \alpha 4$ and $\alpha 5$ be fuzzy sets on $F = \{a, b, c\}$ with

 $\alpha_1 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.4}{c}, \ \alpha_2 = \frac{0.3}{a} + \frac{0.4}{b} + \frac{0.5}{c}, \ \alpha_3 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.4}{c}, \ \alpha_4 = \frac{0.6}{a} + \frac{0.5}{b} + \frac{0.5}{c}, \ \alpha_5 = \frac{0.7}{a} + \frac{0.6}{b} + \frac{0.4}{c} \ \text{and} \ \alpha_1^c = \frac{0.7}{a} + \frac{0.6}{b} + \frac{0.5}{c}.$

Let $\tau 1 = \{0F, \alpha 1, \alpha 2, \alpha 3, \alpha 4, 1F\}$ and $\tau 2 = \{0F, \alpha 1, \alpha 1c, \alpha 2, \alpha 3, \alpha 4, \alpha 5, 1F\}$ be fuzzy topologies on *F*. Consider the fuzzy identity mapping $\psi : (F, \tau 1) \rightarrow (F, \tau 2)$. Then ψ is f.e-pc but not f.e-c mapping because for a Fe-O set $\alpha 5$ on $(F, \tau 2)$, $\psi - 1(\alpha 5) = \alpha 5$ which is not a Fe-O set on $(F, \tau 1)$. Theorem 3.4 Every *-f.e-pc is f.e-c but not conversely.

Proof. Let $\psi : F \to \Delta$ be a -f.e-pc map. We have to prove ψ is f.e-c. Let α be a Fe-O set in Δ . Since ψ is *-f.e-pc, ψ -1(α) is Fe-PO set in *F*. Since every Fe-PO set is a Fe-O set, ψ -1(α) is Fe-O set in *F*. Hence ψ is a f.e-c.

Example 3.5 Let $\beta 1,\beta 2$ and $\beta 3$ be fuzzy sets on $F = \Delta = \{a, b, c\}$. Then $\beta 1 = 1.0/a + 0.0/b + 0.0/c$, $\beta 2 = 1.0/a + 0.6/b + 0.0/c$ and $\beta 3 = 1.0/a + 0.6/b + 0.5/c$ are defined as follows: Consider $\mathfrak{F}_1 = \{0_F, \beta_1, \beta_2, \beta_3, 1_F\}$, let $\psi: F \to \Delta$ be an identity mapping. Then ψ is f.e-c but not *-f.e-pc

 $\beta 1 = \{0F, P1, P2, P3, 1F\}$, let $\psi: F \to \Delta$ be an identity mapping. Then ψ is f.e-c but not *-f.e-pc mapping since for the Fe-O set $\beta 3$ on Δ , $\psi -1(\beta 3) = \beta 3$ which is not a Fe-PO set on F.

Theorem 3.6 Every *-f.e-pc is f.e-pc but not conversely.

Proof. The proof follows from Theorems 3.2 and 3.4.

Example 3.7 In Example 3.5, " ψ is f.e-pc map but it is not *-f.e-pc map."

Theorem 3.8 Every f.e-p.i map is f.e-pc but not conversely.

Proof. Let $\psi : F \to \Delta$ be a f.e-p.i map. We have to prove that ψ is f.e-pc. Let α be any Fe-PO set in Δ . Since ψ is f.e-p.i, $\psi - 1(\alpha)$ is Fe-PO set in *F*. Since every Fe-PO set is a Fe-O set, $\psi - 1(\alpha)$ is Fe-O set in *F*. Hence ψ is a f.e-pc map.

Example 3.9 As described in Example 3.5, consider $\mathfrak{F}_3 = \{0_F, \beta_2, \beta_3, 1_F\}$ and $\mathfrak{F}_1 = \{0_\Delta, \beta_1, \beta_2, \beta_3, 1_\Delta\}$. Let $\psi: F \to \Delta$ be an identity mapping. Then ψ is f.e-pc but not f.e-p.i mapping since for the Fe-PO set β_2 on Δ , $\psi - 1(\beta_2) = \beta_2$ which is not a Fe-PO set on *F*. Theorem 3.10 Every *-f.e-pc is f.e-p.i but not conversely.

Proof. Let $\psi : F \to \Delta$ be a f.e-pc map. We have to prove that ψ is f.e-p.i. Let α be a Fe-PO set in Δ . Since every Fe-PO set is a Fe-O set, α is a Fe-O set. Since ψ is *-f.e-pc, ψ -1(α) is Fe-PO set in *F*. Hence ψ is a f.e-p.i map.

Example 3.11 In Example 3.5," ψ is f.e-p.i map but it is not -f.e-pc map."

Remark 3.12 Fuzzy e-p.irresolute and f.e-c maps are independent of each other.

Example 3.13In Example 3.3, ψ is f.e-p.i map but it is not f.e-c map because for the Fe-O set $\beta 5$ on Δ , $\psi - 1(\beta 5) = \beta 5$ which is not a Fe-O set on *F*.

Let $\beta 1,\beta 2,\beta 3$ be fuzzy sets on $\blacksquare = \{a, b, c\}$ and let $\alpha 1,\alpha 2,\alpha 3$ be fuzzy sets on $\Delta = \{x, y, z\}$. Then $\beta 1 = 0.2/a + 0.2/b + 0.2/c,$ $\beta_2 = \frac{0.3}{g} + \frac{0.3}{b} + \frac{0.3}{c}, \beta_3 = \frac{0.7}{g} + \frac{0.7}{b} + \frac{0.7}{c}, \alpha_1 = \frac{0.2}{x} + \frac{0.0}{y} + \frac{0.2}{z}, \alpha_2 = \frac{0.7}{x} + \frac{0.0}{y} + \frac{0.7}{z}, \alpha_3 = \frac{0.7}{x} + \frac{0.7}{y} + \frac{0.7}{z}$ are defined as follows:

Consider $\mathfrak{F}_1 = \{0_F, \beta_1, \beta_2, \beta_3, 1_F\}, \mathfrak{F}_2 = \{0_\Delta, \alpha_1, \alpha_1, \alpha_3, 1_\Delta\}$. Let $\psi : F \to \Delta$ be a fuzzy mapping defined as f(a) = f(b) = f(c) = y. Then ψ is f.e-c but not fuzzy e-parairreolute because for the Fe-PO set $\alpha 2$ on Δ , $\psi - 1(\alpha 3) = 0$ F which is not a Fe-PO set on F.

Theorem 3.14 Every f.mi.e-pc map is f.mi. e-continuous but not conversely.

Proof. Let $\psi : F \to \Delta$ be a f.mi.e-pc map. We have to prove that ψ is f.mi. e-continuous. Let $\tau 1$ be any FMIe-O set in Δ . Since ψ is f.mi.e-pc, $\psi - 1(\tau 1)$ is Fe-PO set in *F*. Since every Fe-PO set is a Fe-O set, $\psi - 1(\tau 1)$ is a Fe-O set in *F*. Hence ψ is a fuzzy minimal e-continuous.

Example 3.15From Example 3.2, ψ is f.mi. e-continous but it is not a f.mi. e-p.continuous, since for the FMIe-O β 1 on Δ , ψ -1(β 1) = β 1 which is not a Fe-PO set on *F*.

Remark 3.16Fuzzy minimal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other. Example 3.17 Let $\beta 1,\beta 2$ be fuzzy sets on $F = \{a, b, c\}$ and let $\alpha 1,\alpha 2,\alpha 3$ be fuzzy sets on $\Delta = \{x, y, z\}$. Then $\beta 1 = 0.5/a + 0.0/b + 0.0/c$, $\beta 2 = 0.5/a + 0.7/b + 0.0/c$, $\beta 3 = 0.5/a + 0.7/b + 0.1/c$, $\beta_2 = \frac{0.5}{a} + \frac{0.7}{b} + \frac{0.0}{c}, \beta_3 = \frac{0.5}{a} + \frac{0.7}{b} + \frac{0.1}{c}, \alpha_1 = \frac{0.5}{x} + \frac{0.7}{y} + \frac{0.0}{z}, \alpha_2 = \frac{0.5}{x} + \frac{0.7}{y} + \frac{0.9}{z}, \alpha_3 = \frac{0.5}{x} + \frac{0.8}{y} + \frac{0.0}{z}$ and $\alpha_4 = \frac{0.5}{x} + \frac{0.9}{z}$ are defined as follows: Consider $\mathfrak{F}_1 = \{0_F, \beta_1, \beta_2, \beta_3, 1_F\}, \mathfrak{F}_2 = \{0_A, \alpha_1, \alpha_1, \alpha_3, \alpha_4, 1_A\}$. Let $\psi : F \to \Delta$ be an identity maping. Then ψ is f.mi.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set $\alpha 3$ on Δ , $\psi - 1(\alpha 3) = \alpha 3$ which is not a Fe-O set on *F*. In Example 3.2, ψ is f.e-pc but not f.mi.e-pc.

Theorem 3.18 Every f.ma.e-pc is f.ma.e-c but not conversely.

Proof. Let $\psi: F \to \Delta$ be a f.ma.e-pc map. To prove ψ is f.mi. e-continuous. Let δ be any FMAe-O set in Δ . Since ψ is f.ma.e-pc, $\psi = 1(\delta)$ is Fe-PO set in *F*. Since every Fe-PO set is a Fe-O set, $\psi = 1(\delta)$ is a Fe-O set in *F*. Hence ψ is a f.ma.e-c. Example 3.19 In Example 3.2, " ψ is f.ma.e-c but it is not f.ma.e-pc map."

Remark 3.20 Fuzzy maximal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other. Example 3.21 Let $\beta 1,\beta 2$ be fuzzy sets on F = a, b, c, d and let $\alpha 1,\alpha 2,\alpha 3$ be fuzzy sets on $\Delta = \{x, y, z, w\}$. Then $\beta 1 = 0.0/a + 0.0/b + 0.0/c + 0.9d$, $\beta 2 = 0.0/a + 0.0b + 0.7/c + 0.9/d$, $\beta 3 = 0.0/a + 0.5/b + 0.7/c + 0.9/d$, $\beta 4 = 0.2/a + 0.5/b + 0.7/c + 0.9/d$, $\alpha 1 = 0.0/a + 0.0/b + 0.3/c + 0.0/d$, $\alpha 2 = 0.0/a + 0.0/b + 0.3/c + 0.9/d$, $\alpha 3 = 0.0/a + 0.5/b + 0.7/c + 0.9/d$, are defined as follows: Consider F1 = {0 F, $\beta 1, \beta 2, \beta 3, \beta 4, 1 F$ }, F2 = {0 $\Delta, \alpha 1, \alpha 2, \alpha 3, 1\Delta$ }.

Let $\psi : F \to \Delta$ be an identity maping. Then ψ is f.ma.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set $\alpha 2$ on Δ , $\psi -1(\alpha 2) = \alpha 2$ which is not a Fe-O set on *F*. In Example 3.2, ψ is f.epc(resp. f.e-c) but not f.ma.e-pc.

Remark 3.22 Fuzzy minimal e-p.continuous and f.ma.e-pc are independent of each other.

Example 3.23 In Example 3.17, " ψ is f.mi.e-pc map but it is not f.ma.e-pc map. From Example III, ψ is f.ma.e-pc map but it is not f.mi.e-pc map."

Theorem 3.24 Let *F* and Δ be ftss. A map $\psi : F \to \Delta$ is a f.e-pc iff the inverse image of each Fe-PC set in Δ is a fuzzy e-closed set in *F*.

Proof. Obvious.

Theorem 3.25 Let A be a nonzero fuzzy subset of *F*. If $\psi : F \to \Delta$ is f.e-pc then the restriction map $\psi A : A \to \Delta$ is a f.e-pc.

Proof. Let $\psi: F \to \Delta$ be a f.e-pc map and $A \subset F$. To prove ψA is a f.e-pc. Let α be a Fe-PO set in Δ . Since ψ is f.e-pc, $\psi - 1(\alpha)$ is a Fe-O set in *F*. By the definition of relative topology $fA - 1(\alpha) = A^{\psi} - 1(\alpha)$. Therefore $A^{\psi} - 1(\alpha)$ is a Fe-O set in A. Hence ψA is a f.e-pc.

Remark 3.26 The composition of f.e-pc maps need not be f.e-pc.

Example 3.27 Let $F = \Delta = \Phi = \{a, b, c, d\}$ and the fuzzy sets $\beta 1 = 0.0/a + 0.0/b + 0.2/c + 0.0/d$, $\beta 2 = 0.0/a + 0.0/b + 0.2/c + 0.5/d$, $\beta 3 = 0.0/a + 0.7/b + 0.2/c + 0.5/d$ and $\beta 4 = 0.3/a + 0.7/b + 0.2/c + 0.5/d$ are defined as follows: consider $\mathfrak{F}_1 = \{0_F, \beta_1, \beta_2, 1_F\}$, $\mathfrak{F}_2 = \{0_\Delta, \beta_1, \beta_2, \beta_3, 1_\Delta\}$ and F3 = $\{0\Phi, \beta 1, \beta 3, \beta 4, 1\Phi\}$. Let $\psi : F \to \Delta$ and $\xi : \Delta \Phi$ be identity mappings. Then ψ and ξ are f.e-pc maps $\xi \circ \psi : F \to \Phi$ is not f.e-pc, since for the Fe-PO set $\beta 3$ in Φ , $\psi - 1(\beta 3) = \beta 3$ which is not Fe-O set in *F*.

Theorem 3.28 If $\psi: F \to \Delta$ is f.e-c and $\xi: \Delta \to \Phi$ is f.e-pc. Then $\xi_{\circ}: F \to \Phi$ is a f.e-pc.

Proof. Let $\tau 1$ be any Fe-PO set in Φ . As ξ is f.e-pc, $\xi - 1(\tau 1)$ is a Fe-O set in Δ . Again since ψ is f.e-c, $\psi - 1(\xi - 1(\tau 1)) = (\xi \circ \psi) - 1(\tau 1)$ is a Fe-O set in *F*. Hence $\xi \circ \psi$ is a f.e-pc.

Theorem 3.29 Let *F* and Δ be ftss. A map ψ : $F \rightarrow \Delta$ is -f.e-pc iff the inverse image of each fuzzy e-closed set in Δ is a Fe-PC set in *F*.

Proof. Obvious.

Remark 3.30 Let *F* and Δ be fts. If $\psi : F \to \Delta$ is *-f.e-pc, then the restriction map $\psi A : A \to \Delta$ need not be *-f.e-pc.

Example 3.31 Let $F = \Delta = \Phi = \{a, b, c\}$ and the fuzzy sets $\beta 1 = 0.7/a + 0.0/b + 0.0/c$, $\beta 2 = 0.7/a + 0.3/b + 0.0/c$ and $\beta 3 = 0.7/a + 0.3/b + 0.5/c$ are defined as follows: Consider $F = \{0 F, \beta, \beta, \beta, \beta, \beta, 1 F\}$ and $\mathfrak{F}_1 = [0_{\Delta}, \beta_2, 1_{\Delta}]$. Let $\delta = \frac{0.0}{a} + \frac{0.3}{b} + \frac{0.9}{c}$ be a fuzzy set with $F\delta = \{0\delta, \beta 4, \beta 5, \beta 6, \delta\}$ where $\beta 4 = 0.0/a + 0.3/b + 0.0/c$ and $\beta 5 = 0.0/a + 0.3/b + 0.5/c$. Let $\psi : F \to \Delta$ be an identity map. Then ψ is *-f.e-pc but $f\delta : F\delta \to \Delta$ is not a *-f.e-pc, since for the Fe-O set $\beta 2$ in $\Delta, \psi - 1(\beta 2) = \beta 2$ which is not a Fe-PO set in F\delta.

Theorem 3.32 If $\psi : F \to \Delta$ and $\xi : \Delta \to \Phi$ is *-f.e-pc, then $\xi \circ \psi : F \to \Phi$ is a *-f.e-pc.

Proof. Let $\tau 1$ be any Fe-PO set in Φ . As every Fe-PO set is a Fe-O set, $\xi - 1(\tau 1)$ is a Fe-PO set in Δ . Again since ψ is fuzzy

*-f.e-pc, $\psi - 1(\xi - 1(\tau 1)) = (\xi \circ \psi) - 1(\tau 1)$ is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is a *-f.e-pc. Theorem 3.33 If $\psi : F \to \Delta$ is f.e-pc and $\xi : \Delta \to \Phi$ is *-f.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.e-pc(resp. f.e-c).

Proof. Let $\tau 1$ be any Fe-PO(resp. Fe-O) set in Φ . As every Fe-PO set is a Fe-O set, $\xi_{-1}\tau 1$ is a FePO set in Φ . Since ξ is a -f.e-pc, $\xi_{-1}(\tau 1)$ is a Fe-PO set in Δ . Again since ψ is f.e-pc, $\psi_{-1}(\xi_{-1}(\tau 1)) = (\xi \psi) - 1(\tau 1)$ is a Fe-O set in *F*. Hence $\xi \psi$ is f.e-pc(resp. f.e-c) map.

Theorem 3.34 A map ψ : $F \rightarrow \Delta$ is f.e-p.i iff the inverse image of each fuzzy are e-paraclosed set in Δ is a Fe-PC set in *F*.

Proof. Straightforward.

Remark 3.35 If $\psi : F \to \Delta$ is f.e-p.i. Then the restriction map $\psi A : A \to \Delta$ need not be f.e-p.i. Example 3.36 In Example 3.2, let $\delta = 0.0/a + 0.0/b + 0.6/c$ be a fuzzy set with $F\delta = \{0\delta, \beta4, \delta\}$ where $\beta 4 = 0.0/a + 0.0/b + 0.5/c$. Let $\psi : F \to \Delta$ be an identity map. Then ψ is f.e-p.i but $f\delta : F \bullet \Delta$ is not a f.e-p.i, since for the Fe-PO set $\beta 2$ in Δ , $\psi - 1(\beta 2) = \beta 2$ which is not a Fe-PO set in F δ . Theorem 3.37 If $\psi : F \to \Delta$ is f.e-pc and $\xi : \Delta \to \Phi$ is f.e-p.i, then $\xi \circ \psi : F \to \Phi$ is a f.e-pc. Proof. Let $\tau 1$ be a Fe-PO set in Φ . As ξ is a f.e-p.i $\xi - 1(\tau 1)$ is a Fe-PO set in Δ . Again since ψ is f.e-pc, $\psi - 1(\xi - 1(\tau 1)) = (\xi \circ \psi) - 1(\tau 1)$ is a Fe-O set in F. Hence $\xi \circ \psi$ is f.e-pc. Theorem 3.38 If $\psi : F \to \Delta$ and $\xi : \Delta \to \Phi$ are f.e-p.i, then $\xi \circ \psi : F \to \Phi$ is a f.e-p.i. Proof. Let $\tau 1$ be a Fe-PO set in Φ . Since ξ is a f.e-p.i $\xi - 1(\tau 1)$ is a Fe-PO set in Δ . Again since ψ is f.e-p.i.

 $(\xi \circ \psi)$ -1(τ 1) is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.e-pc.

Theorem 3.39 If $\psi : F \to \Delta$ is *-f.e-pc and $\xi : \Delta \to \Phi$ is f.e-p.i. Then $\xi \circ \psi : F \to \Phi$ is a f.e-p.i. Proof. Let $\tau 1$ be a Fe-PO set in Φ . As ξ is a f.e-p.i, $\xi - 1(\tau 1)$ is a Fe-PO set in Δ . Since every Fe-PO set is a Fe-O set, we have

 $\xi - 1(\tau 1)$ is a Fe-O set in Δ . Again since ψ is *-f.e-pc, $\psi - 1(\xi - 1(\tau 1)) = (\xi \circ \psi) - 1(\tau 1)$ is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.e-p.i. \Box

Theorem 3.40 If $\psi : F \to \Delta$ is f.e-p.i and $\xi : \Delta \to \Phi$ is *-f.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.e-p.i.

Proof. Let $\tau 1$ be a Fe-PO set in Φ . As every Fe-PO set is a Fe-O set, $\tau 1$ is a Fe-O set in Φ Since ξ is a f.e-pc, $\xi - 1(\tau 1)$ is a Fe-PO set in Δ . Again Since ψ is f.e-p.i, $\psi - 1(\xi - 1(\tau 1)) = (\xi \circ \psi) - 1(\tau 1)$ is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.e-p.i mapping. \Box

Theorem 3.41 A map $\psi : F \to \Delta$ is f.mi. f.e-pc iff the inverse image of each FMAe-C set in Δ is a Fe-PC set in *F*.

Proof. Obvious.

Remark 3.42 The composition of f.mi.e-pc maps need not be a f.mi.e-pc.

Example 3.43 Let $F = \Delta = \Phi = \{a, b, c, d\}$ and the fuzzy sets $\tau 1 = 0.0/a + 0.0/b + 0.2/c + 0.4/d$, $\tau 2 = 0.0/a + 0.7/b + 0.2/c + 0.4/d$, $\tau 3 = 0.2/a + 0.7/b + 0.2/c + 0.4/d$ and $\tau 4 = 0.3/a + 0.7/b + 0.2/c + 0.4/d$ are defined as follows: consider $\mathfrak{F}_1 = \{0_F, \tau_1, \tau_2, \tau_3, 1_F\}$, $\mathfrak{F}_2 = \{0_\Delta, \tau_2, \tau_3, \tau_4, 1_\Delta\}$ and $\mathfrak{F}_3 = \{0_\Phi, \tau_3, \tau_4, 1_\Phi\}$. Let $\psi : F \to \Delta$ and $\xi : \Delta \longrightarrow \Phi$ be identity mappings. Then ψ and ξ are f.mi.e-pc maps $\xi \quad \psi : F \to \Phi$ is not f.mi.e-pc, since for the FMIe-O set $\tau 3$ in Φ , $\psi - 1(\tau 3) = \tau 3$ which is not Fe-PO set in *F*.

Theorem 3.44 If $\psi : F \to \Delta$ is f.e-p.i and $\xi : \Delta \to \Phi$ is f.mi.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.mi.e-pc. Proof. Let η be a FMIe-O set in Φ . As ξ is f.mi.e-pc, $\xi^{-1}(\eta)$ is a Fe-PO set in Δ . Again since ψ is f.e-p.i, $\psi^{-1}(\xi^{-1}(\eta)) = (\xi \circ \psi)^{-1}(\eta)$ is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.mi.e-pc map.

Theorem 3.45 If $\psi : F \to \Delta$ is f.e-pc and $\xi : \Delta \to \Phi$ is f.mi.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.mi.e-pc. Proof. Let η be a FMIe-O set in Φ . Since ξ is f.mi.e-pc, $\xi^{-1}(\eta)$ is a Fe-PO set in Δ . Again since ψ is f.e-pc, $\psi^{-1}(\xi^{-1}(\eta)) =$

 $(\xi \circ \psi) - 1(\eta)$ is a Fe-O set in *F*. Hence $\xi \circ \psi$ is f.mi.e-pc mapping.

Theorem 3.46 If $\psi: F \to \Delta$ is f.e-p.i and $\xi: \Delta \to \Phi$ is *-f.e-pc, then $\xi \circ \psi: F \to \Phi$ is a f.mi.e-pc. Proof. Let η be a FMIe-O set in Φ . As every f.mi. e-open set is a Fe-O set, η is an e-open set in Φ . Since ψ is *-f.e-pc, ξ -1(η) is a Fe-PO set in Δ . Again since ψ is f.e-p.i ψ -1(ξ -1(η)) = ($\xi \circ \psi$)-1(η) is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.mi.e-pc.

Theorem 3.47 Let *F* and Δ be fts. A map $\psi : F \to \Delta$ is f.ma.e-pc iff the inverse image of each FMIe-C set in Δ is a Fe-PC set in *F*.

Proof. Sraightforward.

Remark 3.48 The composition of f.ma.e-pc maps need not be a f.ma.e-pc.

Example 3.49 Let $F = \Delta = \Phi = \{a, b, c, d\}$ and the fuzzy sets $\tau 1 = 0.0/a + 0.1/b + 0.0/c + 0.0/d$, $\tau 2 = 0.0/a + 0.1/b + 0.7/c + 0.0/d$, $\tau 3 = 0.0/a + 0.1/b + 0.7/c + 0.2/d$ and $\tau 4 = 0.3/a + 0.1/b + 0.7/c + 0.2/d$ are defined as follows: consider $\mathfrak{F}_1 = \{0_F, \tau_1, \tau_2, \tau_3, 1_F\}$, $\mathfrak{F}_2 = \{0_\Delta, \tau_2, \tau_3, \tau_4, 1_\Delta\}$ and $\mathfrak{F}_3 = \{0_\Phi, \tau_3, \tau_4, 1_\Phi\}$. Let $\psi : F \to \Delta$ and $g : \Delta - \Phi$ be identity mappings. Then ψ and ξ are f.ma.e-pc maps $\xi \circ \psi : F - \Phi$ is not f.ma.e-pc, since for the FMAe-O set $\tau 2$ in Φ , $\psi - 1(\tau 2) = \tau 2$ which is not Fe-PO set in *F*.

Theorem 3.50 If $\psi : F \to \Delta$ is f.e-p.i and $\xi : \Delta \to \Phi$ is f.ma.e-pc, hen $\xi \circ \psi : F \to \Phi$ is a f.ma.e-pc. Proof. Let γ be a FMAe-O set in Φ . Since ξ is f.ma.e-pc, $\xi - 1(\gamma)$ is a Fe-PO set in Δ . Again since ψ is f.e-p.i, $\psi - 1(\xi - 1(\gamma)) = (\xi \circ \psi) - 1(\gamma)$ is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.ma.e-pc. Theorem 3.51If $\psi : F \to \Delta$ is f.e-pc and $\xi : \Delta \to \Phi$ is f.ma.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.ma.e-c. Proof. Let γ be a FMAe-O set in Φ . Since ξ is f.ma.e-pc, ξ -1(γ) is a Fe-PO set in Δ . Again since ψ is f.e-pc, ψ -1(ξ -1(γ)) = ($\xi \circ \psi$)-1(γ) is a Fe-O set in *F*. Hence $\xi \circ \psi$ is f.ma.e-c. Theorem 3.52 If $\psi : F \to \Delta$ is f.e-p.i and $\xi : \Delta \to \Phi$ is *-f.e-pc, then $\xi \circ \psi : F \to \Phi$ is a f.ma.e-pc. Proof. Let γ be a FMAe-O set in Φ . Since every FMAe-O set is a Fe-O set, γ is a Fe-O set in Φ . Since ξ is *-f.e-pc, ξ -1(γ) is a Fe-PO set in Δ . Again since ψ is f.e-p.i, ψ -1(ξ -1(γ)) = ($\xi \circ \psi$)-1(γ) is a Fe-PO set in *F*. Hence $\xi \circ \psi$ is f.ma.e-pc.

IV. CONCLUSION

One noteworthy idea is fuzzy e-open sets. This allowed for the introduction and study of fuzzy eparaopen sets. Furthermore, we compared with suitable instances and used a variety of fuzzy mappings.

References

- [1] Ajoy Mukherjee and Kallol Bhandhu Bagchi, On mean open set and mean closed sets, Kyungpook Math. J. 56(2016), 1259-1265.
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968), 182-190.
- [3] B. M. Ittanagi and R. S. Wali, On fuzy minimal open and fuzzy maximal open sets in fuzzy topological spaces, International J. of Mathematical Sciences and Applications,1(2),2011.
- [4] B. M. Ittanagi and S. S. Benchalli, On paraopen sets and maps in topological spaces, Kyungpook Math. J., 56(1)(2016), 301-310.
- [5] F. Nakaoka and N. Oda, Some Properties of Maximal Open Sets, International Journal of Mathematics and Mathematical Sciences, 21(2003), 1331-1340.
- [6] F. Nakaoka and N. Oda, Minimal closed sets and maximal closed sets, International Journal of Mathematics and Mathematical Sciences, (2006), 1-8.
- [7] M. Sankari, S. Durai raj and C. Murugesan, Fuzzy Minimal and Maximal e-Open Sets(Submitted).
- [8] V. Seenivasan and K. Kamala, Fuzzy e-continuity and fuzzy e-open sets, Annals of Fuzzy Mathematics and Informatics, 8(1)(2014),141-148.
- [9] Supriti Saha, Fuzzy δ-continuous mappings, J. Math. Anal. Appl. 126 (1987) 130-142.
- [10] L. A. Zadeh, Fuzzy sets, Information and control 8 (1965), 338-353.