Journal of Management & Entrepreneurship UGC Care Group | Journal
ISSN 2229-5348 Vol-11 Issue-02 Oct 2022

Fuzzy e-paraopen Sets and Maps in Fuzzy Topological Spaces

D MADHUSUDANA REDDY, ASSISTANT PROFESSOR, madhuskd@gmail.com
T VENKATA SIVA, ASSISTANT PROFESSOR, tcsiva222@gmail.com
P SOMA SEKHAR, ASSISTANT PROFESSOR, Paletisomasekhar@gmail.com

Department of Mathematics, Sri Venkateswara Institute of Technology,
N.H 44, Hampapuram, Rapthadu, Anantapuramu, Andhra Pradesh 515722

Abstract

The fuzzy e-paraopen and fuzzy e-paraclosed set notions in fuzzy topological spaces are the focus
of this essay. In addition, we go on to examine the characteristics of a small subset of fuzzy maps,
including those that are e-paracontinuous, -fuzzy e-paracontinuous, e-parairresolute, minimum e-
paracontinuous, and maximum e-paracontinuous.
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maximal e-paracontinuous.

I. Introduction

Following Chang's [2] development of fuzzy topology, Zadeh [10] constructed fuzzy sets. Ittanagi
investigated fuzzy minimum (maximal) open sets in [3] while Wali investigated paraopen sets in
[4]. Afterwards, the concept of mean open set was presented and shown by Mukherjee and Bagchi
in [1]. In this article's part 11, we explore some comparison findings and present the concept of
fuzzy e-paraopen sets. In Section Il1, we provide many maps and examine their outcomes using
suitable instances. These maps include fuzzy e-paracontinuous, -fuzzy e-paracontinuous, fuzzy e-
parairresolute, fuzzy minimum e-paracontinuous, and fuzzy maximum e-paracontinuous. Fuzzy e-
open, fuzzy e-paraopen, fuzzy e-paraclosed, fuzzy minimum e-open, fuzzy maximal e-open, and
fuzzy maximal e-closed are variously abbreviated as Fe-O, Fe-PO, Fe-PC, FMIle-O, FMIe-C,
FMAe-O, and FMAe-C in this study. F and Y are the acronyms for "fuzzy topological spaces” in
this work.

The following terms are sometimes abbreviated as f.e-c, f.e- pc, f.mi.e-c, f.ma.e-pc, f.ma.e-pc,
f.mi.e-p.i, and f.ma.e-p.i, respectively: fuzzy e-continuous, fuzzy e-paracontinuous, fuzzy minimal
e-continuous, fuzzy maximal e-paracontinuous, and fuzzy maximal e-parairresolute.
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Definition 1.1 A fuzzy subset & of a space F is called fuzzy regular open [3] (resp. fuzzy regular
closed) if & =Int(CI1(&)) (resp.§ =Cl(Int(&))).

The fuzzy 6-interior of a fuzzy subset & of F is the union of all fuzzy regular open sets contained
in & A fuzzy subset & is called fuzzy d-open [9] if & = Intd(&). The complement of fuzzy 6-open
set is called fuzzy 6-closed (i.e., & = CI15(§)).

Definition 1.2 A fuzzy subset & of a fts F is called fuzzy e-open [8] if & cl(intd&) int(cl6&) and
fuzzy e-closed set if

& cl(intd€) int(clSE).

Definition 1.3 [7]A proper nonzero fuzzy e-open set o of F is said to be a (i)fuzzy minimal e-
open if 1 F and o are only fuzzy e-open sets contained in a. (ii)fuzzy maximal e-openl F and o
are only fuzzy e-open sets containing o.

Definition 1.4 A map from fts F to another fts Y is called,

(1) fuzzy minimal e-continuous[7] if f —1(}) is a fuzzy e-open set on F for any fuzzy minimal
e-open set A on Y. (ii)fuzzy maximal e-continuous[7] if f —1(}) is a fuzzy e-open set on F for any
fuzzy maximal e-open set A on'Y.

1. FUZZY e-PARAOPEN AND SOME of THEIR PROPERTIES

Definition 2.1 A Fe-O set 3 of a fts F is said to be a Fe-PO set if is neither FMle-O nor FMAe-O
set. The complement of Fe-PO set is Fe-PC set.

Remark 2.2 It could be clear from definitions that every Fe-PO set is a Fe-O set and every Fe-PC
set is a Fe-C set converse is not true as shown in the succeeding example.

Example 2.3 Let B1,2, B3 and P4 be fuzzy sets on F = {a, b, ¢} . Then 1 = 0.5/a + 0.8/b + 0.8/c,
B2 =0.5/a+0.8/b +0.9/c, B3 = 1.0/a + 0.9/b + 0.8/c and p4 = 1.0/a + 0.9/b + 0.9/c be fuzzy sets

with 51 = (0. B1.82.B3. By 1F). Then FMOF) = (5).F MJOF) = Bs). FMCIF) = |55]

FMUCEY =[5 FROF) = B2l FR.CE) = 82551 Here B1 is a Fe-O set but not a Fe-PO set and Be is
a fuzzy e-closed set but not a Fe-PC set.

Remark 2.4 The succeeding example revealed that union and intersection of Fe-PO (resp. Fe-PC)
sets need not be a Fe-PO (resp. Fe-PC).

Example 2.5 In example 2.3, fuzzy sets 2, B3 are Fe-PO sets but 2 v f3 =4 and B2 A 3 = p1
which are not Fe-PO sets. Similarly for the Fe-PC sets pc2,pc3 but fc2 v pc3 = pcl and pc2 A
Bc3 = Bc4 which are not Fe-PC sets.

Theorem 2.6 Let o be a nonzero proper Fe-PO subset of F. Then there exists a FMIe-O set B such
that B < a.

Proof. Since the definition of FMIe-O set, we can conclude that < a.

Theorem 2.7 Let o be a nonzero proper Fe-PO subset of F. Then there exists a FMAe-O set P
such that a < P.

Proof. Since the definition of FMAe-O set, we can conclude that o <P.

Theorem 2.8 (i)Let a be a Fe-PO and f be a FMIle-O setin F. Then a3 =0F or B <.
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(ii)i)Let a be a Fe-PO and t1 be a FMAe-O setin F. then avtl =1 For a <tl.

(iii)Intersection of Fe-PO sets is either Fe-PO or FMIe-O set.

Proof. (i) Let a be a Fe-PO and f be a FMIe-O setin F. Thena " =0F ora”p#0 F.
Suppose a * B =0 F, then we need not prove anything. Assume o 3 C 0 F. Then we get o  is a
Fe-O set and o < B. Hence < a.

(ii) Let o be a Fe-PO and y be a FMAe-O setin F. Thenavy=1Foravp #1F. Assume a
vy =1 F, then we need not prove anything. Suppose o y C 1 F. Then we get o vy is a Fe-O set
and y < a . Since y is a FMAe-O set, a v y =1y which implies a <.

(iii)  Let a and nbe a Fe-PO sets in F. As o A n is a Fe-PO set then we need not prove
anything. Assume o A 1 is not a Fe-PO set. Since definition, aAn is a FMle-O or FMAe-O set. If
aAn is a f.mi. e-open set then we need not prove anything. Suppose a A 1 is a FMAe-O set. Now
a An <aand o An <n which contradicts the fact that a and n are Fe-PO sets. Therefore o A is
not a FMAe-O set. That is a A 1 must be a FMIe-O set.

Theorem 2.9 A subset t1 of F is Fe-PC iff it is neither FMAe-C nor FMle-C set.

Proof. Since the definition of FMAe-C set and the fact that the complement of FMIle-O set is
FMAe-C set and the complement of FMAe-O set is FMle-C set.

Theorem 2.10 Let F be a fts and t1 be a nonzero Fe-PC subset of F. Then there exists a f.mi.e-c
set P such that P < 1.

Proof. Since the definition of FMIe-C set we can conclude that P < t1.

Theorem 2.11 Let F be a fts and t1 be a nonzero Fe-PC subset of F. Then there exists a f.ma.
closet set Q such that t1 < Q. Proof. Since the definition of FMAe-C set we can conclude that 1
<Q.

Theorem 2.12 Let F be a fts.

(i)Let & be a Fe-PC and t be a FMle-C set. Then 0 A T = O or 7 < 0.

(i) Let 5 be a Fe-PC and y be a FMAe-C set. Then oVy=1lrord<v.

(iii)Intersection of Fe-PC sets is either Fe-PC or FMIe-C set.

Proof. (i) Let 6 be a Fe-PC and 1 be a FMIe-C set in F. Then (1 F — ) is Fe-PO and (L F — 1) is
FMAe-O set in F. By Theorem 2.8(ij) we have 1 F-6)V(1F-1)=For(1F-9%)<(1 F—1)
which impliess1 F— (0 At)=1Fort<4d. Therefore At=0F or

(i)  Let 6 be a Fe-PC and y be a FMAe-C set in F. Then (1 F — §) is Fe-PO and (1 F — ) is
FMIe-O sets in F. By Theorem 2.8(i) we have (1F-0)A(lF—y)=0ForlF-y<1F-3
which implies1 F— (6 Vy)=0F or 8 <y. Therefore vV y=1F or

(ilf)  Let 6 and n be a Fe-PC sets in F. As 6 A n is a Fe-PC set then nothing to prove. Assume
A n is not a Fe-PC set. By definition, 5 A n is a FMle-C or FMAe-C set. If 6 A n is a f.mi. e-
closed set, then nothing to prove. Suppose 6 An is a FMAe-C set. Now 6 <6 Anandn <4 An
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which contradicts the fact that 6 and n are Fe-PC sets. Therefore & A n is not a FMAe-C set. That
IS & A must be a FMIe-C set.

.  FUZZY E-PARACONTINUOUS MAPS AND SOME of THEIR PROPERTIES
Definition 3.1 A map y from fts F to another fts A is called

(1) f.e-pc if y—1(a) is a Fe-O set on F for every Fe-PO set o on A.

(i)  *-fe-pcif y—1(a)is a Fe-PO set on F for every Fe-O set o on A.

(i)  f.e-p.iif y—1(a) is a Fe-PO set on F for every Fe-PO set o on A.

(iv)  f.mi.e-pcif y—1(a) is a Fe-PO set on F for every FMle-O set a. on A.

(v) f.ma.e-pc if y—1(a) is a Fe-PO set on F for every FMAe-O set o on A.

Theorem 3.2 Every f.e-c map is f.e-pc but not conversely.

Proof. Let ¢ : F — A be a f.e-c map. We have to prove v is f.e-pc. Let o be any Fe-PO set in A.
Since every Fe-PO set is a Fe-O set, a is Fe-O set in A. Since y is a f.e-c, y—1(a) is Fe-O set in F.
Hence v is a f.e-pc.

Example 3.3 Let al,alc,02,a3,a4 and a5 be fuzzy sets on F = {a, b, c} with

03 04 04 na 04 05 06 , S 04 06 ).5 0s 07 06 )4 07 0.6
HN=s=—+—+— h=—+—+— Mm=—+—7T+—,0 :—*—*—.u::—*—-—+—'.ln\|«),' =—t
3 ) - 7 Y { a 'k h A 0 h ( 7 o

0s

Let t1 = {OF, al, a2, a3, 04, 1F} and 12 = {OF, al, alc, a2, a3, 04, a5, 1F} be fuzzy topologies
on F. Consider the fuzzy identity mapping v : (F, t1) —=(F, t2). Then vy is f.e-pc but not f.e-c
mapping because for a Fe-O set a5 on (F, 12), y—1(a5) = a5 which is not a Fe-O set on (F, t1).
Theorem 3.4 Every =-f.e-pc is f.e-c but not conversely.

Proof. Let ¢ : F — A be a -f.e-pc map. We have to prove v is f.e-c. Let o be a Fe-O set in A.
Since v is *-f.e-pc, y—1(a) is Fe-PO set in F. Since every Fe-PO set is a Fe-O set, y—1(a) is Fe-
O setin F. Hence v is a f.e-C.

Example 3.5 Let 1,82 and B3be fuzzy sets on F = A= {a, b, c}. Then B1 =1.0/a + 0.0/b + 0.0/c,
B2 = 1.0/a + 0.6/b + 0.0/c and B3 = 1.0/a + 0.6/b + 0.5/c are defined as follows: Consider

81 =1{0r.B1.52.83. 1F} jet 4 : F — A be an identity mapping. Then v is f.e-c but not *-f.e-pc
mapping since for the Fe-O set B3 on A, y -1(B3) = B3 which is not a Fe-PO set on F.

Theorem 3.6 Every *-f.e-pc is f.e-pc but not conversely.

Proof. The proof follows from Theorems 3.2 and 3.4.

Example 3.7 In Example 3.5, “y is f.e-pc map but it is not *-f.e-pc map.”

Theorem 3.8 Every f.e-p.i map is f.e-pc but not conversely.

Proof. Let ¢ : F — A be a f.e-p.i map. We have to prove that y is f.e-pc. Let a be any Fe-PO set
in A. Since y is f.e-p.i, ¥ —1(w) is Fe-PO set in F. Since every Fe-PO set is a Fe-O set, y—1(a) is
Fe-O set in F. Hence v is a f.e-pc map.
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Example 3.9 As described in Example 3.5, consider &3 = {Of./55.83.1F} and

§1 = {0a.B1.B2.B3. I} Let w:F — A be an identity mapping. Then v is f.e-pc but not
f.e-p.i mapping since for the Fe-PO set 2 on A, y—1(B2) = f2 which is not a Fe-PO set on F.
Theorem 3.10 Every -f.e-pc is f.e-p.i but not conversely.

Proof. Let & : F — A be a f.e-pc map. We have to prove that v is f.e-p.i. Let o be a Fe-PO set in
A. Since every Fe-PO set is a Fe-O set, a is a Fe-O set. Since vy is x-f.e-pc, y—1(a) is Fe-PO set in
F. Hence v is a f.e-p.i map.

Example 3.11 In Example 3.5, y is f.e-p.i map but it is not -f.e-pc map.”

Remark 3.12 Fuzzy e-p.irresolute and f.e-c maps are independent of each other.

Example 3.13In Example 3.3, vy is f.e-p.i map but it is not f.e-c map because for the Fe-O set B5
on A, y—1(B5) =B5 which is not a Fe-O set on F.

Let B1,82, B3 be fuzzy sets on M = {a, b, ¢} and let al,02,03 be fuzzy sets on A = {X, y, z}. Then
B1 = 0.2/a + 0.2/b + 0.2/c,

p 03 . 03 , 03 07 , 07 0.7 02 , 00 , 02 07 , 00 , 07 07 ., 07 , 07
p\':——o-,—-—,‘u_:—-.——+—,.),:—+—+—.n~:‘— 4 Sy = e 4
b a b ¢ X ¥ i . ¥ y ; X =y

are defined as follows:

Consider &1 = {Or.B1.52.85. 1} F2 = {0a. 1. @y 3. 1A} Let v : F — Abe a fuzzy mapping
defined as f (a) = f (b) = f (¢) = y. Then v is f.e-c but not fuzzy e-parairreolute because for the
Fe-PO set a2 on A, y—1(a3) = 0 F which is not a Fe-PO set on F.

Theorem 3.14 Every f.mi.e-pc map is f.mi. e-continuous but not conversely.

Proof. Let ¢ :F — A be a f.mi.e-pc map. We have to prove that v is f.mi. e-continuous. Let tl

be any FMIe-O set in A. Since y is f.mi.e-pc, y—1(t1) is Fe-PO set in F. Since every Fe-PO set

is a Fe-O set, y—1(t1) is a Fe-O set in F. Hence vy is a fuzzy minimal e-continuous.

Example 3.15From Example 3.2, y is f.mi. e-continous but it is not a f.mi. e-p.continuous, since

for the FMIe-O B1 on A, ¥ —1(B1) = B1 which is not a Fe-PO set on F.

Remark 3.16Fuzzy minimal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other.

Example 3.17 Let B1,p2 be fuzzy sets on F = {a, b, ¢} and let al,02,a3 be fuzzy sets on A = {x,

y, z}. Then B1 = 0.5/a + 0.0/b + 0.0/c, p2 = 0.5/a + 0.7/b + 0.0/c, B3 = 0.5/a + 0.7/b + 0.1/c,
05 , 07,00 o 03 07 , Gl as , 07, 00 05 . 07, 09 03 1\ 0s N8 . no

U'_T-’LT‘ .‘p'J_X:':_{‘.*’%*"T.(I[:T‘T“‘f.l“:f"w"_;‘-__.l'!}:T *—i[ldlz*:?‘j-%dk‘

defined as follows: Consider &1 = {Os..fy.fa s I LiF2 = {Op oo oo Tal Let & i F — A be
an identity maping. Then v is f.mi.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set
a3 on A, y—1(a3) = a3 which is not a Fe-O set on F. In Example 3.2, vy is f.e-pc but not f.mi.e-
pC.

Theorem 3.18 Every f.ma.e-pc is f.ma.e-c but not conversely.

Proof. Let ¢ :F — A be af.ma.e-pc map. To prove v is f.mi. e-continuous. Let  be any FMAe-
O set in A. Since vy is f.ma.e-pc, y—1(d) is Fe-PO set in F. Since every Fe-PO set is a Fe-O
set,y—1(d) is a Fe-O set in F. Hence vy is a f.ma.e-C.
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Example 3.19 In Example 3.2, “y is f.ma.e-c but it is not f.ma.e-pc map.”

Remark 3.20 Fuzzy maximal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other.
Example 3.21 Let B1,B2 be fuzzy sets on F = a, b, ¢, d and let al,a2,a3 be fuzzy sets on A = {X,
y, z, w}. Then B1 =0.0/a + 0.0/b + 0.0/c + 0.9d , B2 = 0.0/a + 0.0b + 0.7/c + 0.9/d , B3 = 0.0/a +
0.5/b+0.7/c +0.9/d , p4 =0.2/a+ 0.5/b + 0.7/c + 0.9/d , al = 0.0/a + 0.0/b + 0.3/c + 0.0/d , & 2
= 0.0/a + 0.0/b + 0.3/c + 0.9/d , 03 = 0.0/a + 0.5/b + 0.7/c + 0.9/d , are defined as follows:
Consider F1={0F, B1, B2, B3, p4, 1 F },F2 = {0A, al, a2, a3, 1A}.

Let ¢ : F — A be an identity maping. Then vy is f.ma.e-pc but not f.e-pc(resp. f.e-c) map because
for the Fe-PO set a2 on A, ¥ —1(a2) = a2 which is not a Fe-O set on F. In Example 3.2, y is f.e-
pc(resp. f.e-c) but not f.ma.e-pc.

Remark 3.22 Fuzzy minimal e-p.continuous and f.ma.e-pc are independent of each other.
Example 3.23 In Example 3.17, “y is f.mi.e-pc map but it is not f.ma.e-pc map. From Example
I, v is f.ma.e-pc map but it is not f.mi.e-pc map.”

Theorem 3.24 Let F and A be ftss. A map ¢ : F — A s a f.e-pc iff the inverse image of each Fe-
PC set in A is a fuzzy e-closed set in F.

Proof. Obvious.

Theorem 3.25 Let A be a nonzero fuzzy subset of F. If ¢/ : F —+ A is f.e-pc then the restriction
map yA : A — Ais af.e-pc.

Proof. Let ¢ :F — A be af.e-pc map and A c F. To prove yA is a f.e-pc. Let o be a Fe-PO set
in A. Since vy is f.e-pc, y—1(a) is a Fe-O set in F. By the definition of relative topology fA—1(a) =
A " y—1(a). Therefore A~ y—1(a) is a Fe-O set in A. Hence yA is a f.e-pc.

Remark 3.26 The composition of f.e-pc maps need not be f.e-pc.

Example 3.27 Let F=A=® = {a, b, ¢, d} and the fuzzy sets f1 = 0.0/a + 0.0/b + 0.2/c + 0.0/d ,
B2 =0.0/a + 0.0/b + 0.2/c + 0.5/d, B3 = 0.0/a + 0.7/b + 0.2/c + 0.5/d and B4 = 0.3/a + 0.7/b +
0.2/c + 0.5/d are defined as follows: consider 51 = {Or.B1.82. 1}, &2 = {Oa.B1. 2. B5. 1a}
and F3 = {0®, B1, B3, p4, 1®} . Let ¥ : F — Aand & : A dwbe identity mappings. Then y and

& are f.e-pc maps £our i F — @ is not f.e-pc, since for the Fe-PO set B3 in @, y—1(B3) = B3
which is not Fe-O set in F.

Theorem3.28 Ify: F > Aisfe-cand §: A — ®isf.e-pc. Then & : F — ® isa f.e-pc.

Proof. Let t1 be any Fe-PO set in ®. As § is f.e-pc, E-1(t1) is a Fe-O set in A. Again since v is
f.e-c, y—1(&-1(t1)) = (Eoy)—1(tl) isaFe-O setin F. Hence & ° y is a f.e-pc. i

Theorem 3.29 Let F and A be ftss. A map ¢ : F — A is -f.e-pc iff the inverse image of each fuzzy
e-closed set in A is a Fe-PC set in F.

Proof. Obvious.

Remark 3.30 Let F and A be fts. If & : F — Ais «-f.e-pc, then the restriction map yA : A — A
need not be *-f.e-pc.
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Example 3.31 Let F = A = ® = {a, b, c} and the fuzzy sets f1 = 0.7/a + 0.0/b + 0.0/c, B2 = 0.7/a
+0.3/b + 0.0/cand B3 =0.7/a + 0.3/b + 0.5/c are defined as follows: Consider F= {OF,B,p
B,1FY and 31 = (0af21al Let® = %+ % * % be a fuzzy set with FS = {08, B4, B5, B6,
3} where B4 = 0.0/a + 0.3/b + 0.0/c and B5 = 0.0/a + 0.3/b + 0.5/c. Let & : & — Abe an identity
map. Then y is x-f.e-pc but 5 : F§ — A is not a =-f.e-pc, since for the Fe-O set B2 in A, y—1(B2)
= B2 which is not a Fe-PO set in F3.

Theorem 3.32 If & : F — Aand £ : A — @ is *-f.e-pc, then E oy : F — @ is a #-f.e-pc.

Proof. Let 11 be any Fe-PO set in ®. As every Fe-PO set is a Fe-O set, &-1(tl) is a Fe-PO set in
A. Again since vy is fuzzy

*-f.e-pc, y—1(&-1(t1)) = (§ > y)—1(tl) is a Fe-PO set in F. Hence & - vy is a *-f.e-pc. m
Theorem 3.33 If & : F — Aisf.e-pcand & : A — @ is =-f.e-pc, then £ o y : F — @ is a f.e-pc(resp.
f.e-c).

Proof. Let t1 be any Fe-PO(resp. Fe-O ) set in ®. As every Fe-PO set is a Fe-O set, £-1tl is a
FePO set in ©. Since & is a -f.e-pc, &-1(tl) is a Fe-PO set in A. Again since v is f.e-pc,
y—1(&-1(t1)) = (E y)—1(t1) is a Fe-O set in F. Hence & v is f.e-pc(resp. f.e-c) map.

Theorem 3.34 A map v : F — A is f.e-p.i iff the inverse image of each fuzzy are e-paraclosed set
in AisaFe-PCsetinF.

Proof. Straightforward.

Remark 3.35 If y : F — A is f.e-p.i. Then the restriction map yA : A — A need not be f.e-p.i.
Example 3.36 In Example 3.2, let 6 = 0.0/a + 0.0/b + 0.6/c be a fuzzy set with Fé = {05, p4, 3}

where p4 = 0.0/a + 0.0/b + 0.5/c. Let ¢ : F — A be an identity map. Then v is f.e-p.i but 5 : FsA
is not a f.e-p.i, since for the Fe-PO set f2 in A, y—1(B2) = B2 which is not a Fe-PO set in F3.
Theorem 3.37 If y : F > Aisf.e-pcand £ : A — D is f.e-p.i, then oy : F — @ is a f.e-pc.

Proof. Let t1 be a Fe-PO set in @. As £ is a f.e-p.i E&-1(t1) is a Fe-PO set in A. Again since vy is
f.e-pc, y—1(&-1(t1)) = (cy)—1(z1) isa Fe-O set in F. Hence & < v is f.e-pc. m
Theorem3.38 If y: F—>Aand & : A — ® are fie-p.i, then oy : F — disaf.e-p.i.

Proof. Let 11 be a Fe-PO set in ®. Since £ is a f.e-p.i E-1(t1) is a Fe-PO set in A. Again since y is
f.e-p.i, y—1(&-1(tl)) =

(& o y)—1(tl)isaFe-PO setin F. Hence & - vy is f.e-pc.

Theorem 3.39 If y : F — Ais #-f.e-pcand £ : A — D is f.e-p.i. Then & oy : F — ® is a f.e-p.i.
Proof. Let t1 be a Fe-PO set in @. As & is a f.e-p.i, &-1(tl) is a Fe-PO set in A. Since every Fe-
PO set is a Fe-O set, we have

& —1(t1) is a Fe-O set in A. Again since y is *-f.e-pc, y—1(E-1(t1)) = (§ oy)—1(t1) is a Fe-PO set
in F. Hence & oy is f.e-p.i. O

Theorem 340 Ify:F— Aisfe-piand&: A — ®is *-f.e-pc,then& oy : F — ®isaf.e-p.i.
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Proof. Let tl be a Fe-PO set in ®. As every Fe-PO set is a Fe-O set, t1 is a Fe-O set in @ Since
§isafe-pc, E&-1(tl)isa Fe-PO set in A. Again Since v is f.e-p.i, y—1(E—1(tl)) = (§ ° y)—1(t])
is a Fe-PO set in F. Hence & ° y is f.e-p.i mapping. O

Theorem 3.41 A map y : F — A is f.mi. f.e-pc iff the inverse image of each FMAe-C setin A is a
Fe-PC setin F.

Proof. Obvious.

Remark 3.42 The composition of f.mi.e-pc maps need not be a f.mi.e-pc.

Example 3.43 Let F = A= ® = {a, b, ¢, d} and the fuzzy sets t1 = 0.0/a + 0.0/b + 0.2/c + 0.4/d, 12
=0.0/a+0.7/b + 0.2/c +0.4/d, 13 =0.2/a+ 0.7/b + 0.2/c + 0.4/d and 14 = 0.3/a+ 0.7/b + 0.2/c +
0.4/d are defined as follows: consider &1 = {Up. 71 72,73, g} &2 = {0a. 2. 73, 74 1Al and
53 ={00.73.74. lo}, Let &/ : F — Aand & : A —» @ be identity mappings. Then y and & are
f.mi.e-pc maps § v : 0 is not f.mi.e-pc, since for the FMle-O set 13 in @, y—1(13) = 13
which is not Fe-PO set in F.

Theorem 3.44 If y : F — Ais fe-p.iand & : A — @ is f.mi.e-pc, then { > y : F — @ is a f.mi.e-pcC.
Proof. Let n be a FMIe-O set in @. As & is f.mi.e-pc, E—1(n) is a Fe-PO set in A. Again since y is
f.e-p.i, y—1(§-1(m)) = (&~y)—1(n) is a Fe-PO set in F. Hence & ° y is f.mi.e-pc map.

O

Theorem 3.45 Ify: F —> Aisfie-pcand §: A — @ is f.mi.e-pc, then { o y : F — @ is a f.mi.e-pcC.
Proof. Let n be a FMIe-O set in @. Since £ is f.mi.e-pc, E-1(n) is a Fe-PO set in A. Again since y
is f.e-pc, y=1(&-1(n)) =

(& °y)—1(n) is a Fe-O set in F. Hence & © y is f.mi.e-pc mapping.

Theorem 3.46 If y: F > Aisfe-p.iand §: A — @ is *-f.e-pc, then { ° y : F — @ is a f.mi.e-pc.
Proof. Let n be a FMIle-O set in ®@. As every f.mi. e-open set is a Fe-O set, n is an e-open set in
®. Since y is *-f.e-pc, &-1(n) is a Fe-PO set in A. Again since v is f.e-p.i y—1(,-1(n)) = (§ ©
y)—1(n) is a Fe-PO set in F. Hence & © y is f.mi.e-pc.

Theorem 3.47 Let F and A be fts. A map & : F — A is f.ma.e-pc iff the inverse image of each
FMle-C setin A is a Fe-PC setin F.

Proof. Sraightforward.

Remark 3.48 The composition of f.ma.e-pc maps need not be a f.ma.e-pc.

Example 3.49 Let F = A=® = {a, b, c, d} and the fuzzy sets t1 = 0.0/a + 0.1/b + 0.0/c + 0.0/d, 12
=0.0/a+0.1/b +0.7/c + 0.0/d, T3 =0.0/a+ 0.1/b + 0.7/c + 0.2/d and t4 = 0.3/a + 0.1/b + 0.7/c +
0.2/d are defined as follows: consider &1 = {Ur. 71 72,73, g} &2 = {0a. 2. 73, 1a 1Al and
53 =1{00.73.74. lo} . Let :F — A and g : A—® be identity mappings. Then v and & are
f.ma.e-pc maps &o vy : Fdis not f.ma.e-pc, since for the FMAe-O set 12 in @, y—1(12) = 12
which is not Fe-PO set in F.

Theorem 3.50 If y : F —> Ais fe-p.iand & : A — @ is f'ma.e-pc, hen o v : F — @ is a f.ma.e-pc.
Proof. Let y be a FMAe-O set in ®. Since & is f.ma.e-pc, &-1(y) is a Fe-PO set in A. Again since
vy is f.e-p.i, y—1(E-1(y)) = (§ > w)—1(y) is a Fe-PO set in F. Hence & ° y is f.ma.e-pc.
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Theorem 3.511fy : F —> Aisf.e-pcand § : A — @ is f.ma.e-pc, then { > y : F — ® is a f.ma.e-C.
Proof. Let y be a FMAe-O set in ®. Since & is f.ma.e-pc, &-1(y) is a Fe-PO set in A. Again since
vy is f.e-pc, y—1(E-1(y)) = (§ ° w)—1(y) is a Fe-O set in F. Hence & - y is f.ma.e-c.

Theorem 3.52 If y : F —> Ais fle-piand & : A — @ is *-f.e-pc, then E o y : F — @ is a f.ma.e-pc.
Proof. Let y be a FMAe-O set in ®@. Since every FMAe-O set is a Fe-O set, y is a Fe-O set in .
Since & is *-f.e-pc, E-1(y) is a Fe-PO set in A. Again since v is f.e-p.i, y—1(E-1(y)) = (§ ° y)—1(y)
is a Fe-PO set in F. Hence & ° y is f.ma.e-pc.

IV.  CONCLUSION

One noteworthy idea is fuzzy e-open sets. This allowed for the introduction and study of fuzzy e-
paraopen sets. Furthermore, we compared with suitable instances and used a variety of fuzzy
mappings.
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