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Abstract 
 

The fuzzy e-paraopen and fuzzy e-paraclosed set notions in fuzzy topological spaces are the focus 

of this essay. In addition, we go on to examine the characteristics of a small subset of fuzzy maps, 

including those that are e-paracontinuous, -fuzzy e-paracontinuous, e-parairresolute, minimum e-

paracontinuous, and maximum e-paracontinuous. 
 

Keywords: Fuzzy e-paraopen, fuzzy e-paracontinuous, fuzzy minimal e-paracontinuous, fuzzy 

maximal e-paracontinuous. 

 

I. Introduction 

 

Following Chang's [2] development of fuzzy topology, Zadeh [10] constructed fuzzy sets. Ittanagi 

investigated fuzzy minimum (maximal) open sets in [3] while Wali investigated paraopen sets in 

[4]. Afterwards, the concept of mean open set was presented and shown by Mukherjee and Bagchi 

in [1]. In this article's part II, we explore some comparison findings and present the concept of 

fuzzy e-paraopen sets. In Section III, we provide many maps and examine their outcomes using 

suitable instances. These maps include fuzzy e-paracontinuous, -fuzzy e-paracontinuous, fuzzy e-

parairresolute, fuzzy minimum e-paracontinuous, and fuzzy maximum e-paracontinuous. Fuzzy e-

open, fuzzy e-paraopen, fuzzy e-paraclosed, fuzzy minimum e-open, fuzzy maximal e-open, and 

fuzzy maximal e-closed are variously abbreviated as Fe-O, Fe-PO, Fe-PC, FMIe-O, FMIe-C, 

FMAe-O, and FMAe-C in this study. F and Y are the acronyms for "fuzzy topological spaces" in 

this work. 

 

The following terms are sometimes abbreviated as f.e-c, f.e- pc, f.mi.e-c, f.ma.e-pc, f.ma.e-pc, 

f.mi.e-p.i, and f.ma.e-p.i, respectively: fuzzy e-continuous, fuzzy e-paracontinuous, fuzzy minimal 

e-continuous, fuzzy maximal e-paracontinuous, and fuzzy maximal e-parairresolute.  
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Definition 1.1 A fuzzy subset ξ of a space F is called fuzzy regular open [3] (resp. fuzzy regular 

closed) if ξ =Int(Cl(ξ)) (resp.ξ =Cl(Int(ξ))). 

The fuzzy δ-interior of a fuzzy subset ξ of F is the union of all fuzzy regular open sets contained 

in ξ. A fuzzy subset ξ is called fuzzy δ-open [9] if ξ = Intδ(ξ). The complement of fuzzy δ-open 

set is called fuzzy δ-closed (i.e., ξ = Clδ(ξ)). 

Definition 1.2 A fuzzy subset ξ of a fts F is called fuzzy e-open [8] if ξ cl(intδξ) int(clδξ) and 

fuzzy e-closed set if 

ξ cl(intδξ) int(clδξ). 

Definition 1.3 [7]A proper nonzero fuzzy e-open set α of F is said to be a (i)fuzzy minimal e- 

open if 1 F and α are only fuzzy e-open sets contained in α. (ii)fuzzy maximal e-open1 F and α 

are only fuzzy e-open sets containing α. 

Definition 1.4 A map from fts F to another fts Y is called, 

(i) fuzzy minimal e-continuous[7] if f −1(λ) is a fuzzy e-open set on F for any fuzzy minimal 

e-open set λ on Y. (ii)fuzzy maximal e-continuous[7] if f −1(λ) is a fuzzy e-open set on F for any 

fuzzy maximal e-open set λ on Y. 

 
II. FUZZY e-PARAOPEN AND SOME of THEIR PROPERTIES 

Definition 2.1 A Fe-O set β of a fts F is said to be a Fe-PO set if is neither FMIe-O nor FMAe-O 

set. The complement of Fe-PO set is Fe-PC set. 

Remark 2.2 It could be clear from definitions that every Fe-PO set is a Fe-O set and every Fe-PC 

set is a Fe-C set converse is not true as shown in the succeeding example. 

Example 2.3 Let β1,β2, β3 and β4 be fuzzy sets on F = {a, b, c} . Then β1 = 0.5/a + 0.8/b + 0.8/c, 

β2 = 0.5/a + 0.8/b + 0.9/c, β3 = 1.0/a + 0.9/b + 0.8/c and β4 = 1.0/a + 0.9/b + 0.9/c be fuzzy sets 

with             Then  

  Here β1 is a Fe-O set but not a Fe-PO set and βc is 

a fuzzy e-closed set but not a Fe-PC set. 

Remark 2.4 The succeeding example revealed that union and intersection of Fe-PO (resp. Fe-PC) 

sets need not be a Fe-PO (resp. Fe-PC). 

Example 2.5 In example 2.3, fuzzy sets β2, β3 are Fe-PO sets but β2 ∨ β3 = β4 and β2 𝖠 β3 = β1 

which are not Fe-PO sets. Similarly for the Fe-PC sets βc2,βc3 but βc2 ∨ βc3 = βc1 and βc2 𝖠 

βc3 = βc4 which are not Fe-PC sets. 

Theorem 2.6 Let α be a nonzero proper Fe-PO subset of F. Then there exists a FMIe-O set β such 

that β < α. 

Proof. Since the definition of FMIe-O set, we can conclude that β < α. 

Theorem 2.7 Let α be a nonzero proper Fe-PO subset of F. Then there exists a FMAe-O set P 

such that α < P. 

Proof. Since the definition of FMAe-O set, we can conclude that α < P. 

Theorem 2.8 (i)Let α be a Fe-PO and β be a FMIe-O set in F. Then α^β = 0 F or β < α. 



Journal of Management & Entrepreneurship 
ISSN 2229-5348 

UGC Care Group I Journal 
Vol-11 Issue-02 Oct 2022 

 

 

 

3  

(ii) i)Let α be a Fe-PO and τ1 be a FMAe-O set in F. then αvτ1 = 1 F or α < τ1. 

(iii)Intersection of Fe-PO sets is either Fe-PO or FMIe-O set. 

Proof. (i) Let α be a Fe-PO and β be a FMIe-O set in F. Then α ^ β = 0 F   or α ^ β = 0 F. 

Suppose α ^ β = 0 F, then we need not prove anything. Assume α β Ç 0 F. Then we get α β is a 

Fe-O set and α β < β. Hence β < α. 

(ii) Let α be a Fe-PO and γ be a FMAe-O set in F. Then α v γ = 1 F or α v β = 1 F. Assume α 

γ = 1 F, then we need not prove anything. Suppose α   γ Ç 1 F. Then we get α   γ is a Fe-O set 

and γ < α γ. Since γ is a FMAe-O set, α v γ = γ which implies α < γ. 

(iii) Let α and ηbe a Fe-PO sets in F. As α 𝖠  η is a Fe-PO set then we need not prove 

anything. Assume α 𝖠 η is not a Fe-PO set. Since definition, α𝖠η is a FMIe-O or FMAe-O set. If 

α𝖠η is a f.mi. e-open set then we need not prove anything. Suppose α 𝖠 η is a FMAe-O set. Now 

α 𝖠 η < α and α 𝖠 η < η which contradicts the fact that α and η are Fe-PO sets. Therefore α 𝖠 η is 

not a FMAe-O set. That is α 𝖠 η must be a FMIe-O set. 

Theorem 2.9 A subset τ1 of F is Fe-PC iff it is neither FMAe-C nor FMIe-C set. 

Proof. Since the definition of FMAe-C set and the fact that the complement of FMIe-O set is 

FMAe-C set and the complement of FMAe-O set is FMIe-C set. 

Theorem 2.10 Let F be a fts and τ1 be a nonzero Fe-PC subset of F. Then there exists a f.mi.e-c 

set P such that P < τ1. 

Proof. Since the definition of FMIe-C set we can conclude that P < τ1. 

Theorem 2.11 Let F be a fts and τ1 be a nonzero Fe-PC subset of F. Then there exists a f.ma. 

closet set Q such that τ1 < Q. Proof. Since the definition of FMAe-C set we can conclude that τ1 

< Q. 

Theorem 2.12 Let F be a fts. 

(i) Let δ be a Fe-PC and τ be a FMIe-C set. Then  

(ii) Let δ be a Fe-PC and γ be a FMAe-C set. Then  

(iii)Intersection of Fe-PC sets is either Fe-PC or FMIe-C set. 

Proof. (i) Let δ be a Fe-PC and τ be a FMIe-C set in F. Then (1 F − δ) is Fe-PO and (1 F − τ) is 

FMAe-O set in F. By Theorem 2.8(ii) we have (1 F − δ) ∨ (1 F − τ) = F or (1 F − δ) < (1 F − τ) 

which implies 1 F − (δ 𝖠 τ) = 1 F or τ < δ. Therefore δ 𝖠 τ = 0 F or 

 
(ii) Let δ be a Fe-PC and γ be a FMAe-C set in F. Then (1 F − δ) is Fe-PO and (1 F − γ) is 

FMIe-O sets in F. By Theorem 2.8(i) we have (1 F − δ) 𝖠 (1 F − γ) = 0 F or 1 F − γ < 1 F − δ 

which implies 1 F − (δ ∨ γ) = 0 F or δ < γ. Therefore δ ∨ γ = 1 F or 

 
(iii) Let δ and η be a Fe-PC sets in F. As δ 𝖠 η is a Fe-PC set then nothing to prove. Assume δ 

𝖠 η is not a Fe-PC set. By definition, δ 𝖠 η is a FMIe-C or FMAe-C set. If δ 𝖠 η is a f.mi. e- 

closed set, then nothing to prove. Suppose δ 𝖠 η is a FMAe-C set. Now δ < δ 𝖠 η and η < δ 𝖠 η 
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which contradicts the fact that δ and η are Fe-PC sets. Therefore δ 𝖠 η is not a FMAe-C set. That 

is δ 𝖠 η must be a FMIe-C set. 

 
III. FUZZY E-PARACONTINUOUS MAPS AND SOME of THEIR PROPERTIES 

Definition 3.1 A map ψ from fts F to another fts ∆ is called 

(i) f.e-pc if ψ−1(α) is a Fe-O set on F for every Fe-PO set α on ∆. 

(ii) *-f.e-pc if ψ−1(α) is a Fe-PO set on F for every Fe-O set α on ∆. 

(iii) f.e-p.i if ψ−1(α) is a Fe-PO set on F for every Fe-PO set α on ∆. 

(iv) f.mi.e-pc if ψ−1(α) is a Fe-PO set on F for every FMIe-O set α on ∆. 

(v) f.ma.e-pc if ψ−1(α) is a Fe-PO set on F for every FMAe-O set α on ∆. 

Theorem 3.2 Every f.e-c map is f.e-pc but not conversely. 

Proof. Let  be a f.e-c map. We have to prove ψ is f.e-pc. Let α be any Fe-PO set in ∆. 

Since every Fe-PO set is a Fe-O set, α is Fe-O set in ∆. Since ψ is a f.e-c, ψ−1(α) is Fe-O set in F. 

Hence ψ is a f.e-pc. 

Example 3.3 Let α1,α1c,α2,α3,α4 and α5 be fuzzy sets on F = {a, b, c} with 
 

Let τ1 = {0F, α1, α2, α3, α4, 1F} and τ2 = {0F, α1, α1c, α2, α3, α4, α5, 1F} be fuzzy topologies 

on F. Consider the fuzzy identity mapping ψ : (F, τ1) (F, τ2). Then ψ is f.e-pc but not f.e-c 

mapping because for a Fe-O set α5 on (F, τ2), ψ−1(α5) = α5 which is not a Fe-O set on (F, τ1). 

Theorem 3.4 Every ∗-f.e-pc is f.e-c but not conversely. 

Proof. Let    be a -f.e-pc map. We have to prove ψ is f.e-c. Let α be a Fe-O set in ∆. 

Since ψ is *-f.e-pc, ψ−1(α) is Fe-PO set in F. Since every Fe-PO set is a Fe-O set, ψ−1(α) is Fe- 

O set in F. Hence ψ is a f.e-c. 

Example 3.5 Let β1,β2 and β3be fuzzy sets on F = ∆ = {a, b, c}. Then β1 = 1.0/a + 0.0/b + 0.0/c, 

β2 = 1.0/a + 0.6/b + 0.0/c and β3 = 1.0/a + 0.6/b + 0.5/c are defined as follows: Consider 

  let be an identity mapping. Then ψ is f.e-c but not ∗-f.e-pc 

mapping since for the Fe-O set β3 on ∆, ψ -1(β3) = β3 which is not a Fe-PO set on F. 

Theorem 3.6 Every ∗-f.e-pc is f.e-pc but not conversely. 

Proof. The proof follows from Theorems 3.2 and 3.4. 

Example 3.7 In Example 3.5, “ψ is f.e-pc map but it is not *-f.e-pc map.” 

Theorem 3.8 Every f.e-p.i map is f.e-pc but not conversely. 

Proof. Let  be a f.e-p.i map. We have to prove that ψ is f.e-pc. Let α be any Fe-PO set 

in ∆. Since ψ is f.e-p.i, ψ−1(α) is Fe-PO set in F. Since every Fe-PO set is a Fe-O set, ψ−1(α) is 

Fe-O set in F. Hence ψ is a f.e-pc map. 
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Example 3.9 As described in Example 3.5, consider     and 

  Let be an identity mapping. Then ψ is f.e-pc but not 

f.e-p.i mapping since for the Fe-PO set β2 on ∆, ψ−1(β2) = β2 which is not a Fe-PO set on F. 

Theorem 3.10 Every ∗-f.e-pc is f.e-p.i but not conversely. 

Proof. Let  be a f.e-pc map. We have to prove that ψ is f.e-p.i. Let α be a Fe-PO set in 

∆. Since every Fe-PO set is a Fe-O set, α is a Fe-O set. Since ψ is ∗-f.e-pc, ψ−1(α) is Fe-PO set in 

F. Hence ψ is a f.e-p.i map. 

Example 3.11 In Example 3.5,“ ψ is f.e-p.i map but it is not -f.e-pc map.” 

Remark 3.12 Fuzzy e-p.irresolute and f.e-c maps are independent of each other. 

Example 3.13In Example 3.3, ψ is f.e-p.i map but it is not f.e-c map because for the Fe-O set β5 

on ∆, ψ−1(β5) = β5  which  is not a Fe-O set on F. 

Let β1,β2, β3 be fuzzy sets on ■ = {a, b, c} and let α1,α2,α3 be fuzzy sets on ∆ = {x, y, z}. Then 

β1 = 0.2/a + 0.2/b + 0.2/c, 

 

are defined as follows: 

Consider    Let be a fuzzy mapping 

defined as f (a) = f (b) = f (c) = y. Then ψ is f.e-c but not fuzzy e-parairreolute because for the 

Fe-PO set α2 on ∆, ψ−1(α3) = 0 F which is not a Fe-PO set on F. 

Theorem 3.14 Every f.mi.e-pc map is f.mi. e-continuous but not conversely. 

Proof. Let  be a f.mi.e-pc map. We have to prove that ψ is f.mi. e-continuous. Let τ1 

be any FMIe-O set in ∆.   Since ψ is f.mi.e-pc, ψ−1(τ1) is Fe-PO set in F. Since every Fe-PO set 

is a Fe-O set, ψ−1(τ1) is a Fe-O set in F. Hence ψ is a fuzzy minimal e-continuous. 

Example 3.15From Example 3.2, ψ is f.mi. e-continous but it is not a f.mi. e-p.continuous, since 

for the FMIe-O β1 on ∆, ψ−1(β1) = β1 which is not a Fe-PO set on F. 

Remark 3.16Fuzzy minimal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other. 

Example 3.17 Let β1,β2 be fuzzy sets on F = {a, b, c} and let α1,α2,α3 be fuzzy sets on ∆ = {x, 

y, z}. Then β1 = 0.5/a + 0.0/b + 0.0/c, β2 = 0.5/a + 0.7/b + 0.0/c, β3 = 0.5/a + 0.7/b + 0.1/c, 

 

defined as follows: Consider  Let    be 

an identity maping. Then ψ is f.mi.e-pc but not f.e-pc(resp. f.e-c) map because for the Fe-PO set 

α3 on ∆, ψ−1(α3) = α3 which is not a Fe-O set on F. In Example 3.2, ψ is f.e-pc but not f.mi.e- 

pc. 

Theorem 3.18 Every f.ma.e-pc is f.ma.e-c but not conversely. 

Proof. Let  be a f.ma.e-pc map. To prove ψ is f.mi. e-continuous. Let δ be any FMAe- 

O set in ∆. Since ψ is f.ma.e-pc, ψ−1(δ) is Fe-PO set in F. Since every Fe-PO set is a Fe-O 

set,ψ−1(δ) is a Fe-O set in F. Hence ψ is a f.ma.e-c. 
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Example 3.19 In Example 3.2, “ψ is f.ma.e-c but it is not f.ma.e-pc map.” 

Remark 3.20 Fuzzy maximal e-p.continuous and f.e-pc(resp. f.e-c) are independent of each other. 

Example 3.21 Let β1,β2 be fuzzy sets on F = a, b, c, d and let α1,α2,α3 be fuzzy sets on ∆ = {x, 

y, z, w}. Then β1 = 0.0/a + 0.0/b + 0.0/c + 0.9d , β2 = 0.0/a + 0.0b + 0.7/c + 0.9/d , β3 = 0.0/a + 

0.5/b + 0.7/c + 0.9/d , β4 = 0.2/a + 0.5/b + 0.7/c + 0.9/d , α1 = 0.0/a + 0.0/b + 0.3/c + 0.0/d ,α2 

= 0.0/a + 0.0/b + 0.3/c + 0.9/d , α3 = 0.0/a + 0.5/b + 0.7/c + 0.9/d , are defined as follows: 

Consider F1 = {0 F, β1, β2, β3, β4, 1 F },F2 = {0∆, α1, α2, α3, 1∆}. 

Let  be an identity maping. Then ψ is f.ma.e-pc but not f.e-pc(resp. f.e-c) map because 

for the Fe-PO set α2 on ∆, ψ−1(α2) = α2 which is not a Fe-O set on F. In Example 3.2, ψ is f.e- 

pc(resp. f.e-c) but not f.ma.e-pc. 

Remark 3.22 Fuzzy minimal e-p.continuous and f.ma.e-pc are independent of each other. 

Example 3.23 In Example 3.17, “ψ is f.mi.e-pc map but it is not f.ma.e-pc map. From Example 

III, ψ is f.ma.e-pc map but it is not f.mi.e-pc map.” 

Theorem 3.24 Let F and ∆ be ftss. A map  is a f.e-pc iff the inverse image of each Fe- 

PC set in ∆ is a fuzzy e-closed set in F. 

Proof. Obvious. 

Theorem 3.25 Let A be a nonzero fuzzy subset of F. If  is f.e-pc then the restriction 

map ψA : A → ∆ is a f.e-pc. 

Proof. Let  be a f.e-pc map and A ⊂ F. To prove ψA is a f.e-pc. Let α be a Fe-PO set 

in ∆. Since ψ is f.e-pc, ψ−1(α) is a Fe-O set in F. By the definition of relative topology fA−1(α) = 

A ^ ψ−1(α). Therefore A ^ ψ−1(α) is a Fe-O set in A. Hence ψA is a f.e-pc. 

Remark 3.26 The composition of f.e-pc maps need not be f.e-pc. 

Example 3.27 Let F = ∆ = Φ = {a, b, c, d} and the fuzzy sets β1 = 0.0/a + 0.0/b + 0.2/c + 0.0/d , 

β2 = 0.0/a + 0.0/b + 0.2/c + 0.5/d, β3 = 0.0/a + 0.7/b + 0.2/c + 0.5/d and β4 = 0.3/a + 0.7/b + 

0.2/c + 0.5/d are defined as follows: consider  

and F3 = {0Φ, β1, β3, β4, 1Φ} . Let and ξ : ∆ Φ be identity mappings. Then ψ and 

ξ are f.e-pc maps   is not f.e-pc, since for the Fe-PO set β3 in Φ, ψ−1(β3) = β3 

which is not Fe-O set in F. 

Theorem 3.28 If ψ : F → ∆ is f.e-c and ξ : ∆ → Φ is f.e-pc. Then ξ◦ : F → Φ is a f.e-pc. 

Proof. Let τ1 be any Fe-PO set in Φ. As ξ is f.e-pc, ξ−1(τ1) is a Fe-O set in ∆. Again since ψ is 

f.e-c, ψ−1(ξ−1(τ1)) = (ξ◦ψ)−1(τ1) is a Fe-O set in F. Hence ξ ◦ ψ is a f.e-pc. □ 

Theorem 3.29 Let F and ∆ be ftss. A map  is -f.e-pc iff the inverse image of each fuzzy 

e-closed set in ∆ is a Fe-PC set in F. 

Proof. Obvious. 

Remark 3.30 Let F and ∆ be fts. If  is ∗-f.e-pc, then the restriction map ψA : A → ∆ 

need not be ∗-f.e-pc. 
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Example 3.31 Let F = ∆ = Φ = {a, b, c} and the fuzzy sets β1 = 0.7/a + 0.0/b + 0.0/c , β2 = 0.7/a 

+ 0.3/b + 0.0/c and β3 = 0.7/a + 0.3/b + 0.5/c are defined as follows: Consider F = {0 F , β , β 

, β , 1 F } and  Let   be a fuzzy set with Fδ = {0δ, β4, β5, β6, 

δ} where β4 = 0.0/a + 0.3/b + 0.0/c and β5 = 0.0/a + 0.3/b + 0.5/c. Let be an identity 

map. Then ψ is ∗-f.e-pc but fδ : Fδ → ∆ is not a ∗-f.e-pc, since for the Fe-O set β2 in ∆, ψ−1(β2) 

= β2 which is not a Fe-PO set in Fδ. 

Theorem 3.32 If and ξ : ∆ → Φ is ∗-f.e-pc, then ξ ◦ ψ : F → Φ is a ∗-f.e-pc. 

Proof. Let τ1 be any Fe-PO set in Φ. As every Fe-PO set is a Fe-O set, ξ−1(τ1) is a Fe-PO set in 

∆. Again since ψ is fuzzy 

∗-f.e-pc, ψ−1(ξ−1(τ1)) = (ξ ◦ ψ)−1(τ1) is a Fe-PO set in F. Hence ξ ◦ ψ is a ∗-f.e-pc. □ 

Theorem 3.33 If is f.e-pc and ξ : ∆ → Φ is ∗-f.e-pc, then ξ ◦ ψ : F → Φ is a f.e-pc(resp. 

f.e-c). 

Proof. Let τ1 be any Fe-PO(resp. Fe-O ) set in Φ. As every Fe-PO set is a Fe-O set, ξ−1τ1 is a 

FePO set in Φ. Since ξ is a -f.e-pc, ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is f.e-pc, 

ψ−1(ξ−1(τ1)) = (ξ ψ)−1(τ1) is a Fe-O set in F. Hence ξ ψ is f.e-pc(resp. f.e-c) map. 

Theorem 3.34 A map ψ : F → ∆ is f.e-p.i iff the inverse image of each fuzzy are e-paraclosed set 

in ∆ is a Fe-PC set in F. 

Proof. Straightforward. 

Remark 3.35 If ψ : F → ∆ is f.e-p.i. Then the restriction map ψA : A → ∆ need not be f.e-p.i. 

Example 3.36 In Example 3.2, let δ = 0.0/a + 0.0/b + 0.6/c be a fuzzy set with Fδ = {0δ, β4, δ} 

where β4 = 0.0/a + 0.0/b + 0.5/c. Let  be an identity map. Then ψ is f.e-p.i but fδ : F ∆ 

is not a f.e-p.i, since for the Fe-PO set β2 in ∆, ψ−1(β2) = β2 which is not a Fe-PO set in Fδ. 

Theorem 3.37 If ψ : F → ∆ is f.e-pc and ξ : ∆ → Φ is f.e-p.i, then ξ ◦ ψ : F → Φ is a f.e-pc. 

Proof. Let τ1 be a Fe-PO set in Φ. As ξ is a f.e-p.i ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is 

f.e-pc, ψ−1(ξ−1(τ1)) = (ξ◦ψ)−1(τ1) is a Fe-O set in F. Hence ξ ◦ ψ is f.e-pc. □ 

Theorem 3.38 If ψ : F → ∆ and ξ : ∆ → Φ are f.e-p.i, then ξ ◦ ψ : F → Φ is a f.e-p.i. 

Proof. Let τ1 be a Fe-PO set in Φ. Since ξ is a f.e-p.i ξ−1(τ1) is a Fe-PO set in ∆. Again since ψ is 

f.e-p.i, ψ−1(ξ−1(τ1)) = 

(ξ ◦ ψ)−1(τ1) is a Fe-PO set in F. Hence ξ ◦ ψ is f.e-pc. 

Theorem 3.39 If ψ : F → ∆ is ∗-f.e-pc and ξ : ∆ → Φ is f.e-p.i. Then ξ ◦ ψ : F → Φ is a f.e-p.i. 

Proof. Let τ1 be a Fe-PO set in Φ. As ξ is a f.e-p.i, ξ−1(τ1) is a Fe-PO set in ∆. Since every Fe- 

PO set is a Fe-O set, we have 

ξ−1(τ1) is a Fe-O set in ∆. Again since ψ is ∗-f.e-pc, ψ−1(ξ−1(τ1)) = (ξ ◦ψ)−1(τ1) is a Fe-PO set 

in F. Hence ξ ◦ψ is f.e-p.i. □ 

Theorem 3.40 If ψ : F → ∆ is f.e-p.i and ξ : ∆ → Φ is ∗-f.e-pc, then ξ ◦ ψ : F → Φ is a f.e-p.i. 
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Proof. Let τ1 be a Fe-PO set in Φ. As every Fe-PO set is a Fe-O set, τ1 is a Fe-O set in Φ Since 

ξ is a f.e-pc, ξ−1(τ1) is a   Fe-PO set in ∆. Again Since ψ is f.e-p.i, ψ−1(ξ−1(τ1)) = (ξ ◦ ψ)−1(τ1) 

is a Fe-PO set in F. Hence ξ ◦ ψ is f.e-p.i mapping. □ 

Theorem 3.41 A map ψ : F → ∆ is f.mi. f.e-pc iff the inverse image of each FMAe-C set in ∆ is a 

Fe-PC set in F. 

Proof. Obvious. 

Remark 3.42 The composition of f.mi.e-pc maps need not be a f.mi.e-pc. 

Example 3.43 Let F = ∆ = Φ = {a, b, c, d} and the fuzzy sets τ1 = 0.0/a + 0.0/b + 0.2/c + 0.4/d, τ2 

= 0.0/a + 0.7/b + 0.2/c + 0.4/d, τ3 = 0.2/a + 0.7/b + 0.2/c + 0.4/d and τ4 = 0.3/a + 0.7/b + 0.2/c + 

0.4/d are defined as follows: consider      and 

. Let and ξ : ∆ Φ be identity mappings. Then ψ and ξ are 

f.mi.e-pc maps ξ   ψ : F    Φ is not f.mi.e-pc, since for the FMIe-O set τ3 in Φ, ψ−1(τ3) = τ3 

which is not Fe-PO set in F. 

Theorem 3.44 If ψ : F → ∆ is f.e-p.i and ξ : ∆ → Φ is f.mi.e-pc, then ξ ◦ ψ : F → Φ is a f.mi.e-pc. 

Proof. Let η be a FMIe-O set in Φ. As ξ is f.mi.e-pc, ξ−1(η) is a Fe-PO set in ∆. Again since ψ is 

f.e-p.i, ψ−1(ξ−1(η)) = (ξ◦ψ)−1(η) is a Fe-PO set in F. Hence ξ ◦ ψ is f.mi.e-pc map. 

□ 

Theorem 3.45 If ψ : F → ∆ is f.e-pc and ξ : ∆ → Φ is f.mi.e-pc, then ξ ◦ ψ : F → Φ is a f.mi.e-pc. 

Proof. Let η be a FMIe-O set in Φ. Since ξ is f.mi.e-pc, ξ−1(η) is a Fe-PO set in ∆. Again since ψ 

is f.e-pc, ψ−1(ξ−1(η)) = 

(ξ ◦ ψ)−1(η) is a Fe-O set in F. Hence ξ ◦ ψ is f.mi.e-pc mapping. 

Theorem 3.46 If ψ : F → ∆ is f.e-p.i and ξ : ∆ → Φ is ∗-f.e-pc, then ξ ◦ ψ : F → Φ is a f.mi.e-pc. 

Proof. Let η be a FMIe-O set in Φ. As every f.mi. e-open set is a Fe-O set, η is an e-open set in 

Φ. Since ψ is ∗-f.e-pc, ξ−1(η) is a Fe-PO set in ∆. Again since ψ is f.e-p.i ψ−1(ξ−1(η)) = (ξ ◦ 

ψ)−1(η) is a Fe-PO set in F. Hence ξ ◦ ψ is f.mi.e-pc. 

Theorem 3.47 Let F and ∆ be fts. A map    is f.ma.e-pc iff the inverse image of each 

FMIe-C set in ∆ is a Fe-PC set in F. 

Proof. Sraightforward. 

Remark 3.48 The composition of f.ma.e-pc maps need not be a f.ma.e-pc. 

Example 3.49 Let F = ∆ = Φ = {a, b, c, d} and the fuzzy sets τ1 = 0.0/a + 0.1/b + 0.0/c + 0.0/d, τ2 

= 0.0/a + 0.1/b + 0.7/c + 0.0/d, τ3 = 0.0/a + 0.1/b + 0.7/c + 0.2/d and τ4 = 0.3/a + 0.1/b + 0.7/c + 

0.2/d are defined as follows: consider      and 

. Let and g : ∆ Φ be identity mappings. Then ψ and ξ are 

f.ma.e-pc maps ξ◦ψ : F Φ is not f.ma.e-pc, since for the FMAe-O set τ2 in Φ, ψ−1(τ2) = τ2 

which is not Fe-PO set in F. 

Theorem 3.50 If ψ : F → ∆ is f.e-p.i and ξ : ∆ → Φ is f.ma.e-pc, hen ξ ◦ ψ : F → Φ is a f.ma.e-pc. 

Proof. Let γ be a FMAe-O set in Φ. Since ξ is f.ma.e-pc, ξ−1(γ) is a Fe-PO set in ∆. Again since 

ψ is f.e-p.i, ψ−1(ξ−1(γ)) = (ξ ◦ ψ)−1(γ) is a Fe-PO set in F. Hence ξ ◦ ψ is f.ma.e-pc. 
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Theorem 3.51If ψ : F → ∆ is f.e-pc and ξ : ∆ → Φ is f.ma.e-pc, then ξ ◦ ψ : F → Φ is a f.ma.e-c. 

Proof. Let γ be a FMAe-O set in Φ. Since ξ is f.ma.e-pc, ξ−1(γ) is a Fe-PO set in ∆. Again since 

ψ is f.e-pc, ψ−1(ξ−1(γ)) = (ξ ◦ ψ)−1(γ) is a Fe-O set in F. Hence ξ ◦ ψ is f.ma.e-c. 

Theorem 3.52 If ψ : F → ∆ is f.e-p.i and ξ : ∆ → Φ is ∗-f.e-pc, then ξ ◦ ψ : F → Φ is a f.ma.e-pc. 

Proof. Let γ be a FMAe-O set in Φ. Since every FMAe-O set is a Fe-O set, γ is a Fe-O set in Φ. 

Since ξ is ∗-f.e-pc, ξ−1(γ) is a Fe-PO set in ∆. Again since ψ is f.e-p.i, ψ−1(ξ−1(γ)) = (ξ ◦ ψ)−1(γ) 

is a Fe-PO set in F. Hence ξ ◦ ψ is f.ma.e-pc. 

 
IV. CONCLUSION 

 

One noteworthy idea is fuzzy e-open sets. This allowed for the introduction and study of fuzzy e-

paraopen sets. Furthermore, we compared with suitable instances and used a variety of fuzzy 

mappings. 
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